yolo11_pred.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # -------------------- Detection Pred Layer --------------------
  6. ## Single-level pred layer
  7. class DetPredLayer(nn.Module):
  8. def __init__(self,
  9. cls_dim :int = 256,
  10. reg_dim :int = 256,
  11. stride :int = 32,
  12. reg_max :int = 16,
  13. num_classes :int = 80,
  14. num_coords :int = 4):
  15. super().__init__()
  16. # --------- Basic Parameters ----------
  17. self.stride = stride
  18. self.cls_dim = cls_dim
  19. self.reg_dim = reg_dim
  20. self.reg_max = reg_max
  21. self.num_classes = num_classes
  22. self.num_coords = num_coords
  23. # --------- Network Parameters ----------
  24. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  25. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  26. self.init_bias()
  27. def init_bias(self):
  28. # cls pred bias
  29. b = self.cls_pred.bias.view(1, -1)
  30. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  31. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  32. # reg pred bias
  33. b = self.reg_pred.bias.view(-1, )
  34. b.data.fill_(1.0)
  35. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  36. w = self.reg_pred.weight
  37. w.data.fill_(0.)
  38. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  39. def generate_anchors(self, fmp_size):
  40. """
  41. fmp_size: (List) [H, W]
  42. """
  43. # generate grid cells
  44. fmp_h, fmp_w = fmp_size
  45. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  46. # [H, W, 2] -> [HW, 2]
  47. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  48. anchors += 0.5 # add center offset
  49. anchors *= self.stride
  50. return anchors
  51. def forward(self, cls_feat, reg_feat):
  52. # pred
  53. cls_pred = self.cls_pred(cls_feat)
  54. reg_pred = self.reg_pred(reg_feat)
  55. # generate anchor boxes: [M, 4]
  56. B, _, H, W = cls_pred.size()
  57. fmp_size = [H, W]
  58. anchors = self.generate_anchors(fmp_size)
  59. anchors = anchors.to(cls_pred.device)
  60. # stride tensor: [M, 1]
  61. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  62. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  63. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  64. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  65. # output dict
  66. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  67. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  68. "anchors": anchors, # List(Tensor) [M, 2]
  69. "strides": self.stride, # List(Int) = [8, 16, 32]
  70. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  71. }
  72. return outputs
  73. ## Multi-level pred layer
  74. class Yolo11DetPredLayer(nn.Module):
  75. def __init__(self, cfg, cls_dim: int, reg_dim: int):
  76. super().__init__()
  77. # --------- Basic Parameters ----------
  78. self.cfg = cfg
  79. self.cls_dim = cls_dim
  80. self.reg_dim = reg_dim
  81. self.num_levels = len(cfg.out_stride)
  82. # ----------- Network Parameters -----------
  83. ## pred layers
  84. self.multi_level_preds = nn.ModuleList(
  85. [DetPredLayer(cls_dim = cls_dim,
  86. reg_dim = reg_dim,
  87. stride = cfg.out_stride[level],
  88. reg_max = cfg.reg_max,
  89. num_classes = cfg.num_classes,
  90. num_coords = 4 * cfg.reg_max)
  91. for level in range(self.num_levels)
  92. ])
  93. ## proj conv
  94. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  95. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  96. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  97. def forward(self, cls_feats, reg_feats):
  98. all_anchors = []
  99. all_strides = []
  100. all_cls_preds = []
  101. all_reg_preds = []
  102. all_box_preds = []
  103. for level in range(self.num_levels):
  104. # -------------- Single-level prediction --------------
  105. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  106. # -------------- Decode bbox --------------
  107. B, M = outputs["pred_reg"].shape[:2]
  108. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  109. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  110. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  111. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  112. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  113. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  114. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  115. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  116. ## tlbr -> xyxy
  117. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  118. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  119. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  120. # collect results
  121. all_cls_preds.append(outputs["pred_cls"])
  122. all_reg_preds.append(outputs["pred_reg"])
  123. all_box_preds.append(box_pred)
  124. all_anchors.append(outputs["anchors"])
  125. all_strides.append(outputs["stride_tensor"])
  126. # output dict
  127. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  128. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  129. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  130. "anchors": all_anchors, # List(Tensor) [M, 2]
  131. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  132. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  133. }
  134. return outputs
  135. if __name__=='__main__':
  136. import time
  137. from thop import profile
  138. # Model config
  139. # YOLO11-Base config
  140. class Yolo11BaseConfig(object):
  141. def __init__(self) -> None:
  142. # ---------------- Model config ----------------
  143. self.width = 1.0
  144. self.depth = 1.0
  145. self.ratio = 1.0
  146. self.reg_max = 16
  147. self.out_stride = [8, 16, 32]
  148. self.max_stride = 32
  149. self.num_levels = 3
  150. ## Head
  151. cfg = Yolo11BaseConfig()
  152. cfg.num_classes = 20
  153. cls_dim = 128
  154. reg_dim = 64
  155. # Build a pred layer
  156. pred = Yolo11DetPredLayer(cfg, cls_dim, reg_dim)
  157. # Inference
  158. cls_feats = [torch.randn(1, cls_dim, 80, 80),
  159. torch.randn(1, cls_dim, 40, 40),
  160. torch.randn(1, cls_dim, 20, 20),]
  161. reg_feats = [torch.randn(1, reg_dim, 80, 80),
  162. torch.randn(1, reg_dim, 40, 40),
  163. torch.randn(1, reg_dim, 20, 20),]
  164. t0 = time.time()
  165. output = pred(cls_feats, reg_feats)
  166. t1 = time.time()
  167. print('Time: ', t1 - t0)
  168. print('====== Pred output ======= ')
  169. pred_cls = output["pred_cls"]
  170. pred_reg = output["pred_reg"]
  171. pred_box = output["pred_box"]
  172. anchors = output["anchors"]
  173. for level in range(cfg.num_levels):
  174. print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
  175. print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
  176. print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
  177. print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
  178. flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
  179. print('==============================')
  180. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  181. print('Params : {:.2f} M'.format(params / 1e6))