yolov4_config.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # yolo Config
  2. def build_yolov4_config(args):
  3. return Yolov4Config()
  4. # YOLOv4 config
  5. class Yolov4Config(object):
  6. def __init__(self) -> None:
  7. # ---------------- Model config ----------------
  8. self.out_stride = [8, 16, 32]
  9. self.max_stride = 32
  10. ## Backbone
  11. self.use_pretrained = True
  12. ## Head
  13. self.head_dim = 256
  14. self.num_cls_head = 2
  15. self.num_reg_head = 2
  16. self.anchor_size = [[10, 13], [16, 30], [33, 23],
  17. [30, 61], [62, 45], [59, 119],
  18. [116, 90], [156, 198], [373, 326]]
  19. # ---------------- Post-process config ----------------
  20. ## Post process
  21. self.val_topk = 1000
  22. self.val_conf_thresh = 0.001
  23. self.val_nms_thresh = 0.7
  24. self.test_topk = 100
  25. self.test_conf_thresh = 0.45
  26. self.test_nms_thresh = 0.5
  27. # ---------------- Assignment config ----------------
  28. ## Matcher
  29. self.iou_thresh = 0.5
  30. ## Loss weight
  31. self.loss_obj = 1.0
  32. self.loss_cls = 1.0
  33. self.loss_box = 5.0
  34. # ---------------- ModelEMA config ----------------
  35. self.use_ema = True
  36. self.ema_decay = 0.9998
  37. self.ema_tau = 2000
  38. # ---------------- Optimizer config ----------------
  39. self.trainer = 'yolo'
  40. self.optimizer = 'adamw'
  41. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  42. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  43. self.batch_size_base = 64
  44. self.momentum = 0.9
  45. self.weight_decay = 0.05
  46. self.clip_max_norm = 35.0
  47. self.warmup_bias_lr = 0.1
  48. self.warmup_momentum = 0.8
  49. # ---------------- Lr Scheduler config ----------------
  50. self.warmup_epoch = 3
  51. self.lr_scheduler = "cosine"
  52. self.max_epoch = 300
  53. self.eval_epoch = 10
  54. self.no_aug_epoch = 20
  55. # ---------------- Data process config ----------------
  56. self.aug_type = 'yolo'
  57. self.mosaic_prob = 1.0
  58. self.mixup_prob = 0.1
  59. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  60. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  61. ## Pixel mean & std
  62. self.pixel_mean = [0., 0., 0.]
  63. self.pixel_std = [255., 255., 255.]
  64. ## Transforms
  65. self.train_img_size = 640
  66. self.test_img_size = 640
  67. self.affine_params = {
  68. 'degrees': 0.0,
  69. 'translate': 0.2,
  70. 'scale': [0.1, 2.0],
  71. 'shear': 0.0,
  72. 'perspective': 0.0,
  73. 'hsv_h': 0.015,
  74. 'hsv_s': 0.7,
  75. 'hsv_v': 0.4,
  76. }
  77. def print_config(self):
  78. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  79. for k, v in config_dict.items():
  80. print("{} : {}".format(k, v))