yolov7_af_neck.py 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. import torch
  2. import torch.nn as nn
  3. from .yolov7_af_basic import BasicConv
  4. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  5. class SPPF(nn.Module):
  6. """
  7. This code referenced to https://github.com/ultralytics/yolov5
  8. """
  9. def __init__(self, cfg, in_dim, out_dim, expansion=0.5):
  10. super().__init__()
  11. ## ----------- Basic Parameters -----------
  12. inter_dim = round(in_dim * expansion)
  13. self.out_dim = out_dim
  14. ## ----------- Network Parameters -----------
  15. self.cv1 = BasicConv(in_dim, inter_dim,
  16. kernel_size=1, padding=0, stride=1,
  17. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  18. self.cv2 = BasicConv(inter_dim * 4, out_dim,
  19. kernel_size=1, padding=0, stride=1,
  20. act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  21. self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
  22. stride=1,
  23. padding=cfg.spp_pooling_size // 2)
  24. def forward(self, x):
  25. x = self.cv1(x)
  26. y1 = self.m(x)
  27. y2 = self.m(y1)
  28. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  29. # SPPF block with CSP module
  30. class SPPFBlockCSP(nn.Module):
  31. """
  32. CSP Spatial Pyramid Pooling Block
  33. """
  34. def __init__(self, cfg, in_dim, out_dim):
  35. super(SPPFBlockCSP, self).__init__()
  36. inter_dim = int(in_dim * cfg.neck_expand_ratio)
  37. self.out_dim = out_dim
  38. self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  39. self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  40. self.module = nn.Sequential(
  41. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  42. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  43. SPPF(cfg, inter_dim, inter_dim, expansion=1.0),
  44. BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
  45. act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
  46. )
  47. self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
  48. def forward(self, x):
  49. x1 = self.cv1(x)
  50. x2 = self.module(self.cv2(x))
  51. y = self.cv3(torch.cat([x1, x2], dim=1))
  52. return y