optimizer.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. import torch
  2. def build_yolo_optimizer(cfg, model, resume=None):
  3. print('==============================')
  4. print('Optimizer: {}'.format(cfg.optimizer))
  5. print('--base lr: {}'.format(cfg.base_lr))
  6. print('--min lr: {}'.format(cfg.min_lr))
  7. print('--momentum: {}'.format(cfg.momentum))
  8. print('--weight_decay: {}'.format(cfg.weight_decay))
  9. # ------------- Divide model's parameters -------------
  10. param_dicts = [], [], []
  11. norm_names = ["norm"] + ["norm{}".format(i) for i in range(10000)]
  12. for n, p in model.named_parameters():
  13. if p.requires_grad:
  14. if "bias" == n.split(".")[-1]:
  15. param_dicts[0].append(p) # no weight decay for all layers' bias
  16. else:
  17. if n.split(".")[-2] in norm_names:
  18. param_dicts[1].append(p) # no weight decay for all NormLayers' weight
  19. else:
  20. param_dicts[2].append(p) # weight decay for all Non-NormLayers' weight
  21. # Build optimizer
  22. if cfg.optimizer == 'sgd':
  23. optimizer = torch.optim.SGD(param_dicts[0], lr=cfg.base_lr, momentum=cfg.momentum, weight_decay=0.0)
  24. elif cfg.optimizer =='adamw':
  25. optimizer = torch.optim.AdamW(param_dicts[0], lr=cfg.base_lr, weight_decay=0.0)
  26. else:
  27. raise NotImplementedError("Unknown optimizer: {}".format(cfg.optimizer))
  28. # Add param groups
  29. optimizer.add_param_group({"params": param_dicts[1], "weight_decay": 0.0})
  30. optimizer.add_param_group({"params": param_dicts[2], "weight_decay": cfg.weight_decay})
  31. start_epoch = 0
  32. if resume and resume != 'None':
  33. checkpoint = torch.load(resume)
  34. # checkpoint state dict
  35. try:
  36. checkpoint_state_dict = checkpoint.pop("optimizer")
  37. print('--Load optimizer from the checkpoint: ', resume)
  38. optimizer.load_state_dict(checkpoint_state_dict)
  39. start_epoch = checkpoint.pop("epoch") + 1
  40. if "mAP" in checkpoint:
  41. print('--Load best metric from the checkpoint: ', resume)
  42. best_map = checkpoint["mAP"]
  43. cfg.best_map = best_map
  44. else:
  45. cfg.best_map = -1.
  46. del checkpoint, checkpoint_state_dict
  47. except:
  48. print("No optimzier in the given checkpoint.")
  49. return optimizer, start_epoch
  50. def build_rtdetr_optimizer(cfg, model, resume=None):
  51. print('==============================')
  52. print('Optimizer: {}'.format(cfg.optimizer))
  53. print('--base lr: {}'.format(cfg.base_lr))
  54. print('--weight_decay: {}'.format(cfg.weight_decay))
  55. # ------------- Divide model's parameters -------------
  56. param_dicts = [], [], [], [], [], []
  57. norm_names = ["norm"] + ["norm{}".format(i) for i in range(10000)]
  58. for n, p in model.named_parameters():
  59. # Non-Backbone's learnable parameters
  60. if "backbone" not in n and p.requires_grad:
  61. if "bias" == n.split(".")[-1]:
  62. param_dicts[0].append(p) # no weight decay for all layers' bias
  63. else:
  64. if n.split(".")[-2] in norm_names:
  65. param_dicts[1].append(p) # no weight decay for all NormLayers' weight
  66. else:
  67. param_dicts[2].append(p) # weight decay for all Non-NormLayers' weight
  68. # Backbone's learnable parameters
  69. elif "backbone" in n and p.requires_grad:
  70. if "bias" == n.split(".")[-1]:
  71. param_dicts[3].append(p) # no weight decay for all layers' bias
  72. else:
  73. if n.split(".")[-2] in norm_names:
  74. param_dicts[4].append(p) # no weight decay for all NormLayers' weight
  75. else:
  76. param_dicts[5].append(p) # weight decay for all Non-NormLayers' weight
  77. # Non-Backbone's learnable parameters
  78. optimizer = torch.optim.AdamW(param_dicts[0], lr=cfg.base_lr, weight_decay=0.0)
  79. optimizer.add_param_group({"params": param_dicts[1], "weight_decay": 0.0})
  80. optimizer.add_param_group({"params": param_dicts[2], "weight_decay": cfg.weight_decay})
  81. # Backbone's learnable parameters
  82. backbone_lr = cfg.base_lr * cfg.backbone_lr_ratio
  83. optimizer.add_param_group({"params": param_dicts[3], "lr": backbone_lr, "weight_decay": 0.0})
  84. optimizer.add_param_group({"params": param_dicts[4], "lr": backbone_lr, "weight_decay": 0.0})
  85. optimizer.add_param_group({"params": param_dicts[5], "lr": backbone_lr, "weight_decay": cfg.weight_decay})
  86. start_epoch = 0
  87. if resume and resume != 'None':
  88. print('--Load optimizer from the checkpoint: ', resume)
  89. checkpoint = torch.load(resume)
  90. # checkpoint state dict
  91. checkpoint_state_dict = checkpoint.pop("optimizer")
  92. optimizer.load_state_dict(checkpoint_state_dict)
  93. start_epoch = checkpoint.pop("epoch") + 1
  94. return optimizer, start_epoch