modules.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. import numpy as np
  2. import torch
  3. import torch.nn as nn
  4. from typing import List
  5. # --------------------- Basic modules ---------------------
  6. class ConvModule(nn.Module):
  7. def __init__(self,
  8. in_dim, # in channels
  9. out_dim, # out channels
  10. kernel_size=1, # kernel size
  11. padding=0, # padding
  12. stride=1, # padding
  13. groups=1, # groups
  14. ):
  15. super(ConvModule, self).__init__()
  16. self.conv = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)
  17. self.norm = nn.BatchNorm2d(out_dim)
  18. self.act = nn.SiLU(inplace=True)
  19. def forward(self, x):
  20. return self.act(self.norm(self.conv(x)))
  21. # --------------------- GELAN modules (from yolov9) ---------------------
  22. class ADown(nn.Module):
  23. def __init__(self, in_dim, out_dim,):
  24. super().__init__()
  25. inter_dim = out_dim // 2
  26. self.conv_layer_1 = ConvModule(in_dim // 2, inter_dim, kernel_size=3, padding=1, stride=2)
  27. self.conv_layer_2 = ConvModule(in_dim // 2, inter_dim, kernel_size=1)
  28. def forward(self, x):
  29. x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
  30. x1,x2 = x.chunk(2, 1)
  31. x1 = self.conv_layer_1(x1)
  32. x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
  33. x2 = self.conv_layer_2(x2)
  34. return torch.cat((x1, x2), 1)
  35. class RepConvN(nn.Module):
  36. """RepConv is a basic rep-style block, including training and deploy status
  37. This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
  38. """
  39. def __init__(self, in_dim, out_dim, k=3, s=1, p=1,):
  40. super().__init__()
  41. assert k == 3 and p == 1
  42. self.in_dim = in_dim
  43. self.out_dim = out_dim
  44. self.act = nn.SiLU(inplace=True)
  45. self.bn = None
  46. self.conv1 = ConvModule(in_dim, out_dim, kernel_size=k, padding=p, stride=s)
  47. self.conv2 = ConvModule(in_dim, out_dim, kernel_size=1, padding=(p - k // 2), stride=s)
  48. def forward(self, x):
  49. """Forward process"""
  50. if hasattr(self, 'conv'):
  51. return self.forward_fuse(x)
  52. else:
  53. id_out = 0 if self.bn is None else self.bn(x)
  54. return self.act(self.conv1(x) + self.conv2(x) + id_out)
  55. def forward_fuse(self, x):
  56. """Forward process"""
  57. return self.act(self.conv(x))
  58. def get_equivalent_kernel_bias(self):
  59. kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
  60. kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
  61. kernelid, biasid = self._fuse_bn_tensor(self.bn)
  62. return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
  63. def _avg_to_3x3_tensor(self, avgp):
  64. channels = self.in_dim
  65. groups = self.g
  66. kernel_size = avgp.kernel_size
  67. input_dim = channels // groups
  68. k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
  69. k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
  70. return k
  71. def _pad_1x1_to_3x3_tensor(self, kernel1x1):
  72. if kernel1x1 is None:
  73. return 0
  74. else:
  75. return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
  76. def _fuse_bn_tensor(self, branch):
  77. if branch is None:
  78. return 0, 0
  79. if isinstance(branch, ConvModule):
  80. kernel = branch.conv.weight
  81. running_mean = branch.norm.running_mean
  82. running_var = branch.norm.running_var
  83. gamma = branch.norm.weight
  84. beta = branch.norm.bias
  85. eps = branch.norm.eps
  86. elif isinstance(branch, nn.BatchNorm2d):
  87. if not hasattr(self, 'id_tensor'):
  88. input_dim = self.in_dim // self.g
  89. kernel_value = np.zeros((self.in_dim, input_dim, 3, 3), dtype=np.float32)
  90. for i in range(self.in_dim):
  91. kernel_value[i, i % input_dim, 1, 1] = 1
  92. self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
  93. kernel = self.id_tensor
  94. running_mean = branch.running_mean
  95. running_var = branch.running_var
  96. gamma = branch.weight
  97. beta = branch.bias
  98. eps = branch.eps
  99. std = (running_var + eps).sqrt()
  100. t = (gamma / std).reshape(-1, 1, 1, 1)
  101. return kernel * t, beta - running_mean * gamma / std
  102. def fuse_convs(self):
  103. if hasattr(self, 'conv'):
  104. return
  105. kernel, bias = self.get_equivalent_kernel_bias()
  106. self.conv = nn.Conv2d(in_channels = self.conv1.conv.in_channels,
  107. out_channels = self.conv1.conv.out_channels,
  108. kernel_size = self.conv1.conv.kernel_size,
  109. stride = self.conv1.conv.stride,
  110. padding = self.conv1.conv.padding,
  111. dilation = self.conv1.conv.dilation,
  112. groups = self.conv1.conv.groups,
  113. bias = True).requires_grad_(False)
  114. self.conv.weight.data = kernel
  115. self.conv.bias.data = bias
  116. for para in self.parameters():
  117. para.detach_()
  118. self.__delattr__('conv1')
  119. self.__delattr__('conv2')
  120. if hasattr(self, 'nm'):
  121. self.__delattr__('nm')
  122. if hasattr(self, 'bn'):
  123. self.__delattr__('bn')
  124. if hasattr(self, 'id_tensor'):
  125. self.__delattr__('id_tensor')
  126. class RepNBottleneck(nn.Module):
  127. def __init__(self,
  128. in_dim: int,
  129. out_dim: int,
  130. shortcut: bool = True,
  131. kernel_size: List = (3, 3),
  132. expansion: float = 0.5,
  133. ):
  134. super().__init__()
  135. inter_dim = round(out_dim * expansion)
  136. self.conv_layer_1 = RepConvN(in_dim, inter_dim, kernel_size[0], p=kernel_size[0]//2, s=1)
  137. self.conv_layer_2 = ConvModule(inter_dim, out_dim, kernel_size[1], padding=kernel_size[1]//2, stride=1)
  138. self.add = shortcut and in_dim == out_dim
  139. def forward(self, x):
  140. h = self.conv_layer_2(self.conv_layer_1(x))
  141. return x + h if self.add else h
  142. class RepNCSP(nn.Module):
  143. def __init__(self,
  144. in_dim: int,
  145. out_dim: int,
  146. num_blocks: int = 1,
  147. shortcut: bool = True,
  148. expansion:float = 0.5,
  149. ):
  150. super().__init__()
  151. inter_dim = int(out_dim * expansion)
  152. self.conv_layer_1 = ConvModule(in_dim, inter_dim, kernel_size=1)
  153. self.conv_layer_2 = ConvModule(in_dim, inter_dim, kernel_size=1)
  154. self.conv_layer_3 = ConvModule(2 * inter_dim, out_dim, kernel_size=1)
  155. self.module = nn.Sequential(*[
  156. RepNBottleneck(in_dim = inter_dim,
  157. out_dim = inter_dim,
  158. kernel_size = [3, 3],
  159. shortcut = shortcut,
  160. expansion = 1.0,
  161. ) for _ in range(num_blocks)])
  162. def forward(self, x):
  163. x1 = self.conv_layer_1(x)
  164. x2 = self.module(self.conv_layer_2(x))
  165. return self.conv_layer_3(torch.cat([x1, x2], dim=1))
  166. class RepGElanLayer(nn.Module):
  167. """YOLOv9's GELAN module"""
  168. def __init__(self,
  169. in_dim :int,
  170. inter_dims :List,
  171. out_dim :int,
  172. num_blocks :int = 1,
  173. shortcut :bool = False,
  174. ):
  175. super(RepGElanLayer, self).__init__()
  176. # ----------- Basic parameters -----------
  177. self.in_dim = in_dim
  178. self.inter_dims = inter_dims
  179. self.out_dim = out_dim
  180. # ----------- Network parameters -----------
  181. self.conv_layer_1 = ConvModule(in_dim, inter_dims[0], kernel_size=1)
  182. self.elan_module_1 = nn.Sequential(
  183. RepNCSP(inter_dims[0]//2,
  184. inter_dims[1],
  185. num_blocks = num_blocks,
  186. shortcut = shortcut,
  187. expansion = 0.5,
  188. ),
  189. ConvModule(inter_dims[1], inter_dims[1], kernel_size=3, padding=1)
  190. )
  191. self.elan_module_2 = nn.Sequential(
  192. RepNCSP(inter_dims[1],
  193. inter_dims[1],
  194. num_blocks = num_blocks,
  195. shortcut = shortcut,
  196. expansion = 0.5,
  197. ),
  198. ConvModule(inter_dims[1], inter_dims[1],kernel_size=3, padding=1)
  199. )
  200. self.conv_layer_2 = ConvModule(inter_dims[0] + 2*self.inter_dims[1], out_dim, kernel_size=1)
  201. def forward(self, x):
  202. # Input proj
  203. x1, x2 = torch.chunk(self.conv_layer_1(x), 2, dim=1)
  204. out = list([x1, x2])
  205. # ELAN module
  206. out.append(self.elan_module_1(out[-1]))
  207. out.append(self.elan_module_2(out[-1]))
  208. # Output proj
  209. out = self.conv_layer_2(torch.cat(out, dim=1))
  210. return out