yolov10_pred.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # -------------------- Detection Pred Layer --------------------
  6. class DetPredLayer(nn.Module):
  7. def __init__(self,
  8. cls_dim :int = 256,
  9. reg_dim :int = 256,
  10. stride :int = 32,
  11. reg_max :int = 16,
  12. num_classes :int = 80,
  13. num_coords :int = 4):
  14. super().__init__()
  15. # --------- Basic Parameters ----------
  16. self.stride = stride
  17. self.cls_dim = cls_dim
  18. self.reg_dim = reg_dim
  19. self.reg_max = reg_max
  20. self.num_classes = num_classes
  21. self.num_coords = num_coords
  22. # --------- Network Parameters ----------
  23. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  24. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  25. self.init_bias()
  26. def init_bias(self):
  27. # cls pred bias
  28. b = self.cls_pred.bias.view(1, -1)
  29. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  30. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  31. # reg pred bias
  32. b = self.reg_pred.bias.view(-1, )
  33. b.data.fill_(1.0)
  34. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  35. w = self.reg_pred.weight
  36. w.data.fill_(0.)
  37. self.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
  38. def generate_anchors(self, fmp_size):
  39. """
  40. fmp_size: (List) [H, W]
  41. """
  42. # generate grid cells
  43. fmp_h, fmp_w = fmp_size
  44. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  45. # [H, W, 2] -> [HW, 2]
  46. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  47. anchors += 0.5 # add center offset
  48. anchors *= self.stride
  49. return anchors
  50. def forward(self, cls_feat, reg_feat):
  51. # pred
  52. cls_pred = self.cls_pred(cls_feat)
  53. reg_pred = self.reg_pred(reg_feat)
  54. # generate anchor boxes: [M, 4]
  55. B, _, H, W = cls_pred.size()
  56. fmp_size = [H, W]
  57. anchors = self.generate_anchors(fmp_size)
  58. anchors = anchors.to(cls_pred.device)
  59. # stride tensor: [M, 1]
  60. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  61. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  62. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  63. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4*self.reg_max)
  64. # output dict
  65. outputs = {"pred_cls": cls_pred, # List(Tensor) [B, M, C]
  66. "pred_reg": reg_pred, # List(Tensor) [B, M, 4*(reg_max)]
  67. "anchors": anchors, # List(Tensor) [M, 2]
  68. "strides": self.stride, # List(Int) = [8, 16, 32]
  69. "stride_tensor": stride_tensor # List(Tensor) [M, 1]
  70. }
  71. return outputs
  72. class Yolov10DetPredLayer(nn.Module):
  73. def __init__(self, cfg, cls_dim: int, reg_dim: int):
  74. super().__init__()
  75. # --------- Basic Parameters ----------
  76. self.cfg = cfg
  77. self.cls_dim = cls_dim
  78. self.reg_dim = reg_dim
  79. self.num_levels = len(cfg.out_stride)
  80. # ----------- Network Parameters -----------
  81. ## pred layers
  82. self.multi_level_preds = nn.ModuleList(
  83. [DetPredLayer(cls_dim = cls_dim,
  84. reg_dim = reg_dim,
  85. stride = cfg.out_stride[level],
  86. reg_max = cfg.reg_max,
  87. num_classes = cfg.num_classes,
  88. num_coords = 4 * cfg.reg_max)
  89. for level in range(self.num_levels)
  90. ])
  91. ## proj conv
  92. proj_init = torch.arange(cfg.reg_max, dtype=torch.float)
  93. self.proj_conv = nn.Conv2d(cfg.reg_max, 1, kernel_size=1, bias=False).requires_grad_(False)
  94. self.proj_conv.weight.data[:] = nn.Parameter(proj_init.view([1, cfg.reg_max, 1, 1]), requires_grad=False)
  95. def forward(self, cls_feats, reg_feats):
  96. all_anchors = []
  97. all_strides = []
  98. all_cls_preds = []
  99. all_reg_preds = []
  100. all_box_preds = []
  101. for level in range(self.num_levels):
  102. # -------------- Single-level prediction --------------
  103. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  104. # -------------- Decode bbox --------------
  105. B, M = outputs["pred_reg"].shape[:2]
  106. # [B, M, 4*(reg_max)] -> [B, M, 4, reg_max]
  107. delta_pred = outputs["pred_reg"].reshape([B, M, 4, self.cfg.reg_max])
  108. # [B, M, 4, reg_max] -> [B, reg_max, 4, M]
  109. delta_pred = delta_pred.permute(0, 3, 2, 1).contiguous()
  110. # [B, reg_max, 4, M] -> [B, 1, 4, M]
  111. delta_pred = self.proj_conv(F.softmax(delta_pred, dim=1))
  112. # [B, 1, 4, M] -> [B, 4, M] -> [B, M, 4]
  113. delta_pred = delta_pred.view(B, 4, M).permute(0, 2, 1).contiguous()
  114. ## tlbr -> xyxy
  115. x1y1_pred = outputs["anchors"][None] - delta_pred[..., :2] * self.cfg.out_stride[level]
  116. x2y2_pred = outputs["anchors"][None] + delta_pred[..., 2:] * self.cfg.out_stride[level]
  117. box_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
  118. # collect results
  119. all_cls_preds.append(outputs["pred_cls"])
  120. all_reg_preds.append(outputs["pred_reg"])
  121. all_box_preds.append(box_pred)
  122. all_anchors.append(outputs["anchors"])
  123. all_strides.append(outputs["stride_tensor"])
  124. # output dict
  125. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  126. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  127. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  128. "anchors": all_anchors, # List(Tensor) [M, 2]
  129. "stride_tensor": all_strides, # List(Tensor) [M, 1]
  130. "strides": self.cfg.out_stride, # List(Int) = [8, 16, 32]
  131. }
  132. return outputs
  133. if __name__=='__main__':
  134. import time
  135. from thop import profile
  136. # Model config
  137. # YOLOv10-Base config
  138. class Yolov10BaseConfig(object):
  139. def __init__(self) -> None:
  140. # ---------------- Model config ----------------
  141. self.width = 0.25
  142. self.depth = 0.34
  143. self.ratio = 2.0
  144. self.reg_max = 16
  145. self.out_stride = [8, 16, 32]
  146. self.max_stride = 32
  147. self.num_levels = 3
  148. ## Head
  149. cfg = Yolov10BaseConfig()
  150. cfg.num_classes = 80
  151. cls_dim = 80
  152. reg_dim = 64
  153. # Build a pred layer
  154. pred = Yolov10DetPredLayer(cfg, cls_dim, reg_dim)
  155. # Inference
  156. cls_feats = [torch.randn(1, cls_dim, 80, 80),
  157. torch.randn(1, cls_dim, 40, 40),
  158. torch.randn(1, cls_dim, 20, 20),]
  159. reg_feats = [torch.randn(1, reg_dim, 80, 80),
  160. torch.randn(1, reg_dim, 40, 40),
  161. torch.randn(1, reg_dim, 20, 20),]
  162. t0 = time.time()
  163. output = pred(cls_feats, reg_feats)
  164. t1 = time.time()
  165. print('Time: ', t1 - t0)
  166. print('====== Pred output ======= ')
  167. pred_cls = output["pred_cls"]
  168. pred_reg = output["pred_reg"]
  169. pred_box = output["pred_box"]
  170. anchors = output["anchors"]
  171. for level in range(cfg.num_levels):
  172. print("- Level-{} : classification -> {}".format(level, pred_cls[level].shape))
  173. print("- Level-{} : delta regression -> {}".format(level, pred_reg[level].shape))
  174. print("- Level-{} : bbox regression -> {}".format(level, pred_box[level].shape))
  175. print("- Level-{} : anchor boxes -> {}".format(level, anchors[level].shape))
  176. flops, params = profile(pred, inputs=(cls_feats, reg_feats, ), verbose=False)
  177. print('==============================')
  178. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  179. print('Params : {:.2f} M'.format(params / 1e6))