| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from typing import List
- from .rtcdet_basic import ELANLayerFPN, MDown, BasicConv
- # Modified YOLOv8's PaFPN
- class RTCPaFPN(nn.Module):
- def __init__(self,
- cfg,
- in_dims :List = [256, 512, 1024],
- ) -> None:
- super(RTCPaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("RTC-PaFPN"))
- # --------------------------- Basic Parameters ---------------------------
- self.in_dims = in_dims[::-1]
- self.out_dims = [round(256*cfg.channel_width), round(512*cfg.channel_width), round(1024*cfg.channel_width)]
- # ----------------------------- Yolov8's Top-down FPN -----------------------------
- ## P5 -> P4
- self.top_down_layer_1 = ELANLayerFPN(in_dim = self.in_dims[0] + self.in_dims[1],
- out_dim = round(512*cfg.channel_width),
- expansion = 0.5,
- num_blocks = cfg.fpn_num_blocks,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P3
- self.top_down_layer_2 = ELANLayerFPN(in_dim = self.in_dims[2] + round(512*cfg.channel_width),
- out_dim = round(256*cfg.channel_width),
- expansion = 0.5,
- num_blocks = cfg.fpn_num_blocks,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- # ----------------------------- Yolov8's Bottom-up PAN -----------------------------
- ## P3 -> P4
- self.dowmsample_layer_1 = MDown(round(256*cfg.channel_width), round(256*cfg.channel_width),
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.bottom_up_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.channel_width) + round(512*cfg.channel_width),
- out_dim = round(512*cfg.channel_width),
- expansion = 0.5,
- num_blocks = cfg.fpn_num_blocks,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- ## P4 -> P5
- self.dowmsample_layer_2 = MDown(round(512*cfg.channel_width), round(512*cfg.channel_width),
- act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise)
- self.bottom_up_layer_2 = ELANLayerFPN(in_dim = round(512*cfg.channel_width) + self.in_dims[0],
- out_dim = round(1024*cfg.channel_width),
- expansion = 0.5,
- num_blocks = cfg.fpn_num_blocks,
- act_type = cfg.fpn_act,
- norm_type = cfg.fpn_norm,
- depthwise = cfg.fpn_depthwise,
- )
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, features):
- c3, c4, c5 = features
- # ------------------ Top down FPN ------------------
- ## P5 -> P4
- p5_up = F.interpolate(c5, scale_factor=2.0)
- p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1))
- ## P4 -> P3
- p4_up = F.interpolate(p4, scale_factor=2.0)
- p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1))
- # ------------------ Bottom up FPN ------------------
- ## p3 -> P4
- p3_ds = self.dowmsample_layer_1(p3)
- p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1))
- ## P4 -> 5
- p4_ds = self.dowmsample_layer_2(p4)
- p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1))
- out_feats = [p3, p4, p5] # [P3, P4, P5]
-
- return out_feats
|