loss.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from utils.box_ops import get_ious, bbox2dist
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. from .matcher import AlignedSimOTA
  7. class SetCriterion(object):
  8. def __init__(self, cfg):
  9. self.cfg = cfg
  10. self.reg_max = cfg.reg_max
  11. self.num_classes = cfg.num_classes
  12. # --------------- Loss config ---------------
  13. self.loss_cls_weight = cfg.loss_cls
  14. self.loss_box_weight = cfg.loss_box
  15. self.loss_dfl_weight = cfg.loss_dfl
  16. # --------------- Matcher config ---------------
  17. self.matcher = AlignedSimOTA(soft_center_radius = cfg.ota_soft_center_radius,
  18. topk_candidates = cfg.ota_topk_candidates,
  19. num_classes = cfg.num_classes,
  20. )
  21. def loss_classes(self, pred_cls, target, beta=2.0):
  22. # Quality FocalLoss
  23. """
  24. pred_cls: (torch.Tensor): [N, C]。
  25. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  26. """
  27. label, score = target
  28. pred_sigmoid = pred_cls.sigmoid()
  29. scale_factor = pred_sigmoid
  30. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  31. ce_loss = F.binary_cross_entropy_with_logits(
  32. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  33. bg_class_ind = pred_cls.shape[-1]
  34. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  35. if pos.shape[0] > 0:
  36. pos_label = label[pos].long()
  37. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  38. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  39. pred_cls[pos, pos_label], score[pos],
  40. reduction='none') * scale_factor.abs().pow(beta)
  41. return ce_loss
  42. def loss_bboxes(self, pred_box, gt_box):
  43. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  44. loss_box = 1.0 - ious
  45. return loss_box
  46. def loss_dfl(self, pred_reg, gt_box, anchor, stride):
  47. # rescale coords by stride
  48. gt_box_s = gt_box / stride
  49. anchor_s = anchor / stride
  50. # compute deltas
  51. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.reg_max - 1)
  52. gt_left = gt_ltrb_s.to(torch.long)
  53. gt_right = gt_left + 1
  54. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  55. weight_right = 1 - weight_left
  56. # loss left
  57. loss_left = F.cross_entropy(
  58. pred_reg.view(-1, self.reg_max),
  59. gt_left.view(-1),
  60. reduction='none').view(gt_left.shape) * weight_left
  61. # loss right
  62. loss_right = F.cross_entropy(
  63. pred_reg.view(-1, self.reg_max),
  64. gt_right.view(-1),
  65. reduction='none').view(gt_left.shape) * weight_right
  66. loss_dfl = (loss_left + loss_right).mean(-1)
  67. return loss_dfl
  68. def __call__(self, outputs, targets):
  69. """
  70. outputs['pred_cls']: List(Tensor) [B, M, C]
  71. outputs['pred_box']: List(Tensor) [B, M, 4]
  72. outputs['pred_box']: List(Tensor) [B, M, 4]
  73. outputs['strides']: List(Int) [8, 16, 32] output stride
  74. targets: (List) [dict{'boxes': [...],
  75. 'labels': [...],
  76. 'orig_size': ...}, ...]
  77. """
  78. bs = outputs['pred_cls'][0].shape[0]
  79. device = outputs['pred_cls'][0].device
  80. fpn_strides = outputs['strides']
  81. anchors = outputs['anchors']
  82. # preds: [B, M, C]
  83. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  84. box_preds = torch.cat(outputs['pred_box'], dim=1)
  85. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  86. # --------------- label assignment ---------------
  87. cls_targets = []
  88. box_targets = []
  89. assign_metrics = []
  90. for batch_idx in range(bs):
  91. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  92. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  93. assigned_result = self.matcher(fpn_strides=fpn_strides,
  94. anchors=anchors,
  95. pred_cls=cls_preds[batch_idx].detach(),
  96. pred_box=box_preds[batch_idx].detach(),
  97. gt_labels=tgt_labels,
  98. gt_bboxes=tgt_bboxes
  99. )
  100. cls_targets.append(assigned_result['assigned_labels'])
  101. box_targets.append(assigned_result['assigned_bboxes'])
  102. assign_metrics.append(assigned_result['assign_metrics'])
  103. # List[B, M, C] -> Tensor[BM, C]
  104. cls_targets = torch.cat(cls_targets, dim=0)
  105. box_targets = torch.cat(box_targets, dim=0)
  106. assign_metrics = torch.cat(assign_metrics, dim=0)
  107. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  108. bg_class_ind = self.num_classes
  109. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  110. num_fgs = assign_metrics.sum()
  111. if is_dist_avail_and_initialized():
  112. torch.distributed.all_reduce(num_fgs)
  113. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  114. # ------------------ Classification loss ------------------
  115. cls_preds = cls_preds.view(-1, self.num_classes)
  116. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  117. loss_cls = loss_cls.sum() / num_fgs
  118. # ------------------ Regression loss ------------------
  119. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  120. box_targets_pos = box_targets[pos_inds]
  121. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  122. loss_box = loss_box.sum() / num_fgs
  123. # ------------------ Distribution focal loss ------------------
  124. ## process anchors
  125. anchors = torch.cat(outputs['anchors'], dim=0)
  126. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  127. ## process stride tensors
  128. strides = torch.cat(outputs['stride_tensor'], dim=0)
  129. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  130. ## fg preds
  131. reg_preds_pos = reg_preds.view(-1, 4*self.reg_max)[pos_inds]
  132. anchors_pos = anchors[pos_inds]
  133. strides_pos = strides[pos_inds]
  134. ## compute dfl
  135. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, strides_pos)
  136. loss_dfl = loss_dfl.sum() / num_fgs
  137. # total loss
  138. losses = self.loss_cls_weight * loss_cls + \
  139. self.loss_box_weight * loss_box + \
  140. self.loss_dfl_weight * loss_dfl
  141. loss_dict = dict(
  142. loss_cls = loss_cls,
  143. loss_box = loss_box,
  144. loss_dfl = loss_dfl,
  145. losses = losses
  146. )
  147. return loss_dict