| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- import torch
- import torch.nn as nn
- from .yolov7_basic import BasicConv
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, cfg, in_dim, out_dim, expansion=0.5):
- super().__init__()
- ## ----------- Basic Parameters -----------
- inter_dim = round(in_dim * expansion)
- self.out_dim = out_dim
- ## ----------- Network Parameters -----------
- self.cv1 = BasicConv(in_dim, inter_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.cv2 = BasicConv(inter_dim * 4, out_dim,
- kernel_size=1, padding=0, stride=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size,
- stride=1,
- padding=cfg.spp_pooling_size // 2)
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- # SPPF block with CSP module
- class SPPFBlockCSP(nn.Module):
- """
- CSP Spatial Pyramid Pooling Block
- """
- def __init__(self, cfg, in_dim, out_dim):
- super(SPPFBlockCSP, self).__init__()
- inter_dim = int(in_dim * cfg.neck_expand_ratio)
- self.out_dim = out_dim
- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
- self.module = nn.Sequential(
- BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
- SPPF(cfg, inter_dim, inter_dim, expansion=1.0),
- BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1,
- act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise),
- )
- self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm)
-
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.module(self.cv2(x))
- y = self.cv3(torch.cat([x1, x2], dim=1))
- return y
|