yolov5_af_config.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. # yolo Config
  2. def build_yolov5af_config(args):
  3. if args.model == 'yolov5_af_n':
  4. return Yolov5AFNConfig()
  5. elif args.model == 'yolov5_af_s':
  6. return Yolov5AFSConfig()
  7. elif args.model == 'yolov5_af_m':
  8. return Yolov5AFMConfig()
  9. elif args.model == 'yolov5_af_l':
  10. return Yolov5AFLConfig()
  11. elif args.model == 'yolov5_af_':
  12. return Yolov5AFXConfig()
  13. else:
  14. raise NotImplementedError("No config for model: {}".format(args.model))
  15. # YOLOv5AF-Base config
  16. class Yolov5AFBaseConfig(object):
  17. def __init__(self) -> None:
  18. # ---------------- Model config ----------------
  19. self.width = 1.0
  20. self.depth = 1.0
  21. self.out_stride = [8, 16, 32]
  22. self.max_stride = 32
  23. self.num_levels = 3
  24. self.scale = "b"
  25. ## Backbone
  26. self.bk_act = 'silu'
  27. self.bk_norm = 'BN'
  28. self.bk_depthwise = False
  29. self.use_pretrained = True
  30. ## Neck
  31. self.neck_act = 'silu'
  32. self.neck_norm = 'BN'
  33. self.neck_depthwise = False
  34. self.neck_expand_ratio = 0.5
  35. self.spp_pooling_size = 5
  36. ## FPN
  37. self.fpn_act = 'silu'
  38. self.fpn_norm = 'BN'
  39. self.fpn_depthwise = False
  40. ## Head
  41. self.head_act = 'silu'
  42. self.head_norm = 'BN'
  43. self.head_depthwise = False
  44. self.head_dim = 256
  45. self.num_cls_head = 2
  46. self.num_reg_head = 2
  47. # ---------------- Post-process config ----------------
  48. ## Post process
  49. self.val_topk = 1000
  50. self.val_conf_thresh = 0.001
  51. self.val_nms_thresh = 0.7
  52. self.test_topk = 100
  53. self.test_conf_thresh = 0.4
  54. self.test_nms_thresh = 0.5
  55. # ---------------- Assignment config ----------------
  56. ## Matcher
  57. self.ota_center_sampling_radius = 2.5
  58. self.ota_topk_candidate = 10
  59. ## Loss weight
  60. self.loss_obj = 1.0
  61. self.loss_cls = 1.0
  62. self.loss_box = 5.0
  63. # ---------------- ModelEMA config ----------------
  64. self.use_ema = True
  65. self.ema_decay = 0.9998
  66. self.ema_tau = 2000
  67. # ---------------- Optimizer config ----------------
  68. self.trainer = 'yolo'
  69. self.optimizer = 'adamw'
  70. self.base_lr = 0.001 # base_lr = per_image_lr * batch_size
  71. self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio
  72. self.batch_size_base = 64
  73. self.momentum = 0.9
  74. self.weight_decay = 0.05
  75. self.clip_max_norm = 35.0
  76. self.warmup_bias_lr = 0.1
  77. self.warmup_momentum = 0.8
  78. # ---------------- Lr Scheduler config ----------------
  79. self.warmup_epoch = 3
  80. self.lr_scheduler = "cosine"
  81. self.max_epoch = 300
  82. self.eval_epoch = 10
  83. self.no_aug_epoch = 20
  84. # ---------------- Data process config ----------------
  85. self.aug_type = 'yolo'
  86. self.mosaic_prob = 1.0
  87. self.mixup_prob = 0.0
  88. self.copy_paste = 0.0 # approximated by the YOLOX's mixup
  89. self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25]
  90. ## Pixel mean & std
  91. self.pixel_mean = [0., 0., 0.]
  92. self.pixel_std = [255., 255., 255.]
  93. ## Transforms
  94. self.train_img_size = 640
  95. self.test_img_size = 640
  96. self.affine_params = {
  97. 'degrees': 0.0,
  98. 'translate': 0.2,
  99. 'scale': [0.1, 2.0],
  100. 'shear': 0.0,
  101. 'perspective': 0.0,
  102. 'hsv_h': 0.015,
  103. 'hsv_s': 0.7,
  104. 'hsv_v': 0.4,
  105. }
  106. def print_config(self):
  107. config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')}
  108. for k, v in config_dict.items():
  109. print("{} : {}".format(k, v))
  110. # YOLOv5AF-N
  111. class Yolov5AFNConfig(Yolov5AFBaseConfig):
  112. def __init__(self) -> None:
  113. super().__init__()
  114. # ---------------- Model config ----------------
  115. self.width = 0.25
  116. self.depth = 0.34
  117. self.scale = "n"
  118. # ---------------- Data process config ----------------
  119. self.mosaic_prob = 1.0
  120. self.mixup_prob = 0.0
  121. self.copy_paste = 0.5
  122. # YOLOv5AF-S
  123. class Yolov5AFSConfig(Yolov5AFBaseConfig):
  124. def __init__(self) -> None:
  125. super().__init__()
  126. # ---------------- Model config ----------------
  127. self.width = 0.50
  128. self.depth = 0.34
  129. self.scale = "s"
  130. # ---------------- Data process config ----------------
  131. self.mosaic_prob = 1.0
  132. self.mixup_prob = 0.0
  133. self.copy_paste = 0.5
  134. # YOLOv5AF-M
  135. class Yolov5AFMConfig(Yolov5AFBaseConfig):
  136. def __init__(self) -> None:
  137. super().__init__()
  138. # ---------------- Model config ----------------
  139. self.width = 0.75
  140. self.depth = 0.67
  141. self.scale = "m"
  142. # ---------------- Data process config ----------------
  143. self.mosaic_prob = 1.0
  144. self.mixup_prob = 0.1
  145. self.copy_paste = 0.5
  146. # YOLOv5AF-L
  147. class Yolov5AFLConfig(Yolov5AFBaseConfig):
  148. def __init__(self) -> None:
  149. super().__init__()
  150. # ---------------- Model config ----------------
  151. self.width = 1.0
  152. self.depth = 1.0
  153. self.scale = "l"
  154. # ---------------- Data process config ----------------
  155. self.mosaic_prob = 1.0
  156. self.mixup_prob = 0.1
  157. self.copy_paste = 0.5
  158. # YOLOv5AF-X
  159. class Yolov5AFXConfig(Yolov5AFBaseConfig):
  160. def __init__(self) -> None:
  161. super().__init__()
  162. # ---------------- Model config ----------------
  163. self.width = 1.25
  164. self.depth = 1.34
  165. self.scale = "x"
  166. # ---------------- Data process config ----------------
  167. self.mosaic_prob = 1.0
  168. self.mixup_prob = 0.1
  169. self.copy_paste = 0.5