yolov3_basic.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. import torch
  2. import torch.nn as nn
  3. from typing import List
  4. # --------------------- Basic modules ---------------------
  5. def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
  6. conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
  7. return conv
  8. def get_activation(act_type=None):
  9. if act_type == 'relu':
  10. return nn.ReLU(inplace=True)
  11. elif act_type == 'lrelu':
  12. return nn.LeakyReLU(0.1, inplace=True)
  13. elif act_type == 'mish':
  14. return nn.Mish(inplace=True)
  15. elif act_type == 'silu':
  16. return nn.SiLU(inplace=True)
  17. elif act_type is None:
  18. return nn.Identity()
  19. else:
  20. raise NotImplementedError
  21. def get_norm(norm_type, dim):
  22. if norm_type == 'BN':
  23. return nn.BatchNorm2d(dim)
  24. elif norm_type == 'GN':
  25. return nn.GroupNorm(num_groups=32, num_channels=dim)
  26. elif norm_type is None:
  27. return nn.Identity()
  28. else:
  29. raise NotImplementedError
  30. class BasicConv(nn.Module):
  31. def __init__(self,
  32. in_dim, # in channels
  33. out_dim, # out channels
  34. kernel_size=1, # kernel size
  35. padding=0, # padding
  36. stride=1, # padding
  37. dilation=1, # dilation
  38. act_type :str = 'lrelu', # activation
  39. norm_type :str = 'BN', # normalization
  40. depthwise :bool = False
  41. ):
  42. super(BasicConv, self).__init__()
  43. self.depthwise = depthwise
  44. use_bias = False if norm_type is not None else True
  45. if not depthwise:
  46. self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=use_bias)
  47. self.norm = get_norm(norm_type, out_dim)
  48. else:
  49. self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias)
  50. self.norm1 = get_norm(norm_type, in_dim)
  51. self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1)
  52. self.norm2 = get_norm(norm_type, out_dim)
  53. self.act = get_activation(act_type)
  54. def forward(self, x):
  55. if not self.depthwise:
  56. return self.act(self.norm(self.conv(x)))
  57. else:
  58. # Depthwise conv
  59. x = self.act(self.norm1(self.conv1(x)))
  60. # Pointwise conv
  61. x = self.act(self.norm2(self.conv2(x)))
  62. return x
  63. # ---------------------------- Basic Modules ----------------------------
  64. class YoloBottleneck(nn.Module):
  65. def __init__(self,
  66. in_dim :int,
  67. out_dim :int,
  68. kernel_size :List = [1, 3],
  69. expansion :float = 0.5,
  70. shortcut :bool = False,
  71. act_type :str = 'silu',
  72. norm_type :str = 'BN',
  73. depthwise :bool = False,
  74. ) -> None:
  75. super(YoloBottleneck, self).__init__()
  76. inter_dim = int(out_dim * expansion)
  77. # ----------------- Network setting -----------------
  78. self.conv_layer1 = BasicConv(in_dim, inter_dim,
  79. kernel_size=kernel_size[0], padding=kernel_size[0]//2, stride=1,
  80. act_type=act_type, norm_type=norm_type, depthwise=depthwise)
  81. self.conv_layer2 = BasicConv(inter_dim, out_dim,
  82. kernel_size=kernel_size[1], padding=kernel_size[1]//2, stride=1,
  83. act_type=act_type, norm_type=norm_type, depthwise=depthwise)
  84. self.shortcut = shortcut and in_dim == out_dim
  85. def forward(self, x):
  86. h = self.conv_layer2(self.conv_layer1(x))
  87. return x + h if self.shortcut else h
  88. class ResBlock(nn.Module):
  89. def __init__(self,
  90. in_dim,
  91. out_dim,
  92. num_blocks :int = 1,
  93. expansion :float = 0.5,
  94. shortcut :bool = False,
  95. act_type :str = 'silu',
  96. norm_type :str = 'BN',
  97. depthwise :bool = False,
  98. ):
  99. super(ResBlock, self).__init__()
  100. # ---------- Basic parameters ----------
  101. self.num_blocks = num_blocks
  102. self.expansion = expansion
  103. self.shortcut = shortcut
  104. # ---------- Model parameters ----------
  105. module = []
  106. for i in range(num_blocks):
  107. if i == 0:
  108. module.append(YoloBottleneck(in_dim = in_dim,
  109. out_dim = out_dim,
  110. kernel_size = [1, 3],
  111. expansion = expansion,
  112. shortcut = shortcut,
  113. act_type = act_type,
  114. norm_type = norm_type,
  115. depthwise = depthwise))
  116. else:
  117. module.append(YoloBottleneck(in_dim = out_dim,
  118. out_dim = out_dim,
  119. kernel_size = [1, 3],
  120. expansion = expansion,
  121. shortcut = shortcut,
  122. act_type = act_type,
  123. norm_type = norm_type,
  124. depthwise = depthwise))
  125. self.module = nn.Sequential(*module)
  126. def forward(self, x):
  127. out = self.module(x)
  128. return out