modules.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. import torch
  2. import torch.nn as nn
  3. def get_activation(act_type=None):
  4. if act_type == 'sigmoid':
  5. return nn.Sigmoid()
  6. elif act_type == 'relu':
  7. return nn.ReLU(inplace=True)
  8. elif act_type == 'lrelu':
  9. return nn.LeakyReLU(0.1, inplace=True)
  10. elif act_type == 'mish':
  11. return nn.Mish(inplace=True)
  12. elif act_type == 'silu':
  13. return nn.SiLU(inplace=True)
  14. elif act_type is None:
  15. return nn.Identity()
  16. else:
  17. raise NotImplementedError
  18. def get_norm(norm_type, dim):
  19. if norm_type == 'bn':
  20. return nn.BatchNorm2d(dim)
  21. elif norm_type == 'ln':
  22. return LayerNorm2d(dim)
  23. elif norm_type == 'gn':
  24. return nn.GroupNorm(num_groups=32, num_channels=dim)
  25. elif norm_type is None:
  26. return nn.Identity()
  27. else:
  28. raise NotImplementedError
  29. class LayerNorm2d(nn.Module):
  30. def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
  31. super().__init__()
  32. self.weight = nn.Parameter(torch.ones(num_channels))
  33. self.bias = nn.Parameter(torch.zeros(num_channels))
  34. self.eps = eps
  35. def forward(self, x: torch.Tensor) -> torch.Tensor:
  36. u = x.mean(1, keepdim=True)
  37. s = (x - u).pow(2).mean(1, keepdim=True)
  38. x = (x - u) / torch.sqrt(s + self.eps)
  39. x = self.weight[:, None, None] * x + self.bias[:, None, None]
  40. return x
  41. class ConvModule(nn.Module):
  42. def __init__(self,
  43. in_dim :int,
  44. out_dim :int,
  45. kernel_size :int = 1,
  46. padding :int = 0,
  47. stride :int = 1,
  48. act_type :str = "relu",
  49. norm_type :str = "bn",
  50. depthwise :bool = False) -> None:
  51. super().__init__()
  52. use_bias = False if norm_type is not None else True
  53. self.depthwise = depthwise
  54. if not depthwise:
  55. self.conv = nn.Conv2d(in_channels=in_dim, out_channels=out_dim,
  56. kernel_size=kernel_size, padding=padding, stride=stride,
  57. bias=use_bias)
  58. self.norm = get_norm(norm_type, out_dim)
  59. else:
  60. self.conv1 = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,
  61. kernel_size=kernel_size, padding=padding, stride=stride, groups=in_dim,
  62. bias=use_bias)
  63. self.norm1 = get_norm(norm_type, in_dim)
  64. self.conv2 = nn.Conv2d(in_channels=in_dim, out_channels=out_dim,
  65. kernel_size=1, padding=0, stride=1,
  66. bias=use_bias)
  67. self.norm2 = get_norm(norm_type, out_dim)
  68. self.act = get_activation(act_type)
  69. def forward(self, x):
  70. if self.depthwise:
  71. x = self.norm1(self.conv1(x))
  72. x = self.act(self.norm2(self.conv2(x)))
  73. else:
  74. x = self.act(self.norm(self.conv(x)))
  75. return x
  76. # -------------- ResNet's modules --------------
  77. class PlainResBlock(nn.Module):
  78. def __init__(self, in_dim, inter_dim, out_dim, stride=1):
  79. super().__init__()
  80. # -------- Basic parameters --------
  81. self.in_dim = in_dim
  82. self.out_dim = out_dim
  83. self.inter_dim = inter_dim
  84. self.stride = stride
  85. self.downsample = stride > 1 or in_dim != out_dim
  86. # -------- Model parameters --------
  87. self.conv_layer_1 = ConvModule(in_dim, inter_dim,
  88. kernel_size=3, padding=1, stride=stride,
  89. act_type='relu', norm_type='bn', depthwise=False)
  90. self.conv_layer_2 = ConvModule(inter_dim, out_dim,
  91. kernel_size=3, padding=1, stride=1,
  92. act_type=None, norm_type='bn', depthwise=False)
  93. self.out_act = nn.ReLU(inplace=True)
  94. if self.downsample:
  95. self.res_layer = ConvModule(in_dim, out_dim,
  96. kernel_size=1, padding=0, stride=stride,
  97. act_type=None, norm_type='bn', depthwise=False)
  98. else:
  99. self.res_layer = nn.Identity()
  100. def forward(self, x):
  101. out = self.conv_layer_1(x)
  102. out = self.conv_layer_2(out)
  103. x = self.res_layer(x)
  104. out = x + out
  105. out = self.out_act(out)
  106. return out
  107. class BottleneckResBlock(nn.Module):
  108. def __init__(self, in_dim, inter_dim, out_dim, stride=1):
  109. super().__init__()
  110. # -------- Basic parameters --------
  111. self.in_dim = in_dim
  112. self.out_dim = out_dim
  113. self.stride = stride
  114. self.downsample = stride > 1 or in_dim != out_dim
  115. # -------- Model parameters --------
  116. self.conv_layer_1 = ConvModule(in_dim, inter_dim,
  117. kernel_size=1, padding=0, stride=1,
  118. act_type='relu', norm_type='bn', depthwise=False)
  119. self.conv_layer_2 = ConvModule(inter_dim, inter_dim,
  120. kernel_size=3, padding=1, stride=stride,
  121. act_type='relu', norm_type='bn', depthwise=False)
  122. self.conv_layer_3 = ConvModule(inter_dim, out_dim,
  123. kernel_size=1, padding=0, stride=1,
  124. act_type=None, norm_type='bn', depthwise=False)
  125. self.out_act = nn.ReLU(inplace=True)
  126. if self.downsample:
  127. self.res_layer = ConvModule(in_dim, out_dim,
  128. kernel_size=1, padding=0, stride=stride,
  129. act_type=None, norm_type='bn', depthwise=False)
  130. else:
  131. self.res_layer = nn.Identity()
  132. def forward(self, x):
  133. out = self.conv_layer_1(x)
  134. out = self.conv_layer_2(out)
  135. out = self.conv_layer_3(out)
  136. x = self.res_layer(x)
  137. out = x + out
  138. out = self.out_act(out)
  139. return out