yolof_decoder.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. try:
  5. from .modules import ConvModule
  6. except:
  7. from modules import ConvModule
  8. class YolofHead(nn.Module):
  9. def __init__(self, cfg, in_dim: int, out_dim: int,):
  10. super().__init__()
  11. self.ctr_clamp = 32
  12. self.DEFAULT_EXP_CLAMP = math.log(1e8)
  13. self.DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
  14. # ------------------ Basic parameters -------------------
  15. self.cfg = cfg
  16. self.in_dim = in_dim
  17. self.out_stride = cfg.out_stride
  18. self.num_classes = cfg.num_classes
  19. self.num_cls_head = cfg.num_cls_head
  20. self.num_reg_head = cfg.num_reg_head
  21. # Anchor config
  22. self.anchor_size = torch.as_tensor(cfg.anchor_size)
  23. self.num_anchors = len(cfg.anchor_size)
  24. # ------------------ Network parameters -------------------
  25. ## classification head
  26. cls_heads = []
  27. self.cls_head_dim = out_dim
  28. for i in range(self.num_cls_head):
  29. if i == 0:
  30. cls_heads.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  31. else:
  32. cls_heads.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  33. ## bbox regression head
  34. reg_heads = []
  35. self.reg_head_dim = out_dim
  36. for i in range(self.num_reg_head):
  37. if i == 0:
  38. reg_heads.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  39. else:
  40. reg_heads.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  41. self.cls_heads = nn.Sequential(*cls_heads)
  42. self.reg_heads = nn.Sequential(*reg_heads)
  43. # pred layer
  44. self.obj_pred = nn.Conv2d(self.reg_head_dim, 1 * self.num_anchors, kernel_size=3, padding=1)
  45. self.cls_pred = nn.Conv2d(self.cls_head_dim, self.num_classes * self.num_anchors, kernel_size=3, padding=1)
  46. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4 * self.num_anchors, kernel_size=3, padding=1)
  47. # init bias
  48. self._init_pred_layers()
  49. def _init_pred_layers(self):
  50. # init cls pred
  51. nn.init.normal_(self.cls_pred.weight, mean=0, std=0.01)
  52. init_prob = 0.01
  53. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  54. nn.init.constant_(self.cls_pred.bias, bias_value)
  55. # init reg pred
  56. nn.init.normal_(self.reg_pred.weight, mean=0, std=0.01)
  57. nn.init.constant_(self.reg_pred.bias, 0.0)
  58. # init obj pred
  59. nn.init.normal_(self.obj_pred.weight, mean=0, std=0.01)
  60. nn.init.constant_(self.obj_pred.bias, 0.0)
  61. def get_anchors(self, fmp_size):
  62. """fmp_size: list -> [H, W] \n
  63. stride: int -> output stride
  64. """
  65. # generate grid cells
  66. fmp_h, fmp_w = fmp_size
  67. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  68. # anchor points: [H, W, 2] -> [HW, 2]
  69. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) + 0.5
  70. # [HW, 2] -> [HW, 1, 2] -> [HW, KA, 2]
  71. anchor_xy = anchor_xy[:, None, :].repeat(1, self.num_anchors, 1)
  72. anchor_xy *= self.out_stride # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2]
  73. # anchor boxes: [KA, 2] -> [HW, KA, 2]
  74. anchor_wh = self.anchor_size[None, :, :].repeat(fmp_h*fmp_w, 1, 1)
  75. # [HW, KA, 4] -> [M, 4], M = H*W*KA
  76. anchor_boxes = torch.cat([anchor_xy, anchor_wh], dim=-1)
  77. anchor_boxes = anchor_boxes.view(-1, 4)
  78. return anchor_boxes
  79. def decode_boxes(self, anchor_boxes, pred_reg):
  80. """
  81. anchor_boxes: (List[tensor]) [1, M, 4]
  82. pred_reg: (List[tensor]) [B, M, 4]
  83. """
  84. # x = x_anchor + dx * w_anchor
  85. # y = y_anchor + dy * h_anchor
  86. pred_ctr_offset = pred_reg[..., :2] * anchor_boxes[..., 2:]
  87. pred_ctr_offset = torch.clamp(pred_ctr_offset, min=-self.ctr_clamp, max=self.ctr_clamp)
  88. pred_ctr_xy = anchor_boxes[..., :2] + pred_ctr_offset
  89. # w = w_anchor * exp(tw)
  90. # h = h_anchor * exp(th)
  91. pred_dwdh = pred_reg[..., 2:]
  92. pred_dwdh = torch.clamp(pred_dwdh, max=self.DEFAULT_SCALE_CLAMP)
  93. pred_wh = anchor_boxes[..., 2:] * pred_dwdh.exp()
  94. # convert [x, y, w, h] -> [x1, y1, x2, y2]
  95. pred_x1y1 = pred_ctr_xy - 0.5 * pred_wh
  96. pred_x2y2 = pred_ctr_xy + 0.5 * pred_wh
  97. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  98. return pred_box
  99. def forward(self, x):
  100. # ------------------- Decoupled head -------------------
  101. cls_feats = self.cls_heads(x)
  102. reg_feats = self.reg_heads(x)
  103. # ------------------- Generate anchor box -------------------
  104. fmp_size = cls_feats.shape[2:]
  105. anchor_boxes = self.get_anchors(fmp_size) # [M, 4]
  106. anchor_boxes = anchor_boxes.to(cls_feats.device)
  107. # ------------------- Predict -------------------
  108. obj_pred = self.obj_pred(reg_feats)
  109. cls_pred = self.cls_pred(cls_feats)
  110. reg_pred = self.reg_pred(reg_feats)
  111. # ------------------- Precoess preds -------------------
  112. ## implicit objectness
  113. B, _, H, W = obj_pred.size()
  114. obj_pred = obj_pred.view(B, -1, 1, H, W)
  115. cls_pred = cls_pred.view(B, -1, self.num_classes, H, W)
  116. normalized_cls_pred = cls_pred + obj_pred - torch.log(
  117. 1. +
  118. torch.clamp(cls_pred, max=self.DEFAULT_EXP_CLAMP).exp() +
  119. torch.clamp(obj_pred, max=self.DEFAULT_EXP_CLAMP).exp())
  120. # [B, KA, C, H, W] -> [B, H, W, KA, C] -> [B, M, C], M = HxWxKA
  121. normalized_cls_pred = normalized_cls_pred.permute(0, 3, 4, 1, 2).contiguous()
  122. normalized_cls_pred = normalized_cls_pred.view(B, -1, self.num_classes)
  123. # [B, KA*4, H, W] -> [B, KA, 4, H, W] -> [B, H, W, KA, 4] -> [B, M, 4]
  124. reg_pred = reg_pred.view(B, -1, 4, H, W).permute(0, 3, 4, 1, 2).contiguous()
  125. reg_pred = reg_pred.view(B, -1, 4)
  126. ## Decode bbox
  127. box_pred = self.decode_boxes(anchor_boxes[None], reg_pred) # [B, M, 4]
  128. outputs = {"pred_cls": normalized_cls_pred,
  129. "pred_reg": reg_pred,
  130. "pred_box": box_pred,
  131. "anchors": anchor_boxes,
  132. }
  133. return outputs