fcos_head.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. try:
  5. from .modules import ConvModule
  6. except:
  7. from modules import ConvModule
  8. class Scale(nn.Module):
  9. """
  10. Multiply the output regression range by a learnable constant value
  11. """
  12. def __init__(self, init_value=1.0):
  13. """
  14. init_value : initial value for the scalar
  15. """
  16. super().__init__()
  17. self.scale = nn.Parameter(
  18. torch.tensor(init_value, dtype=torch.float32),
  19. requires_grad=True
  20. )
  21. def forward(self, x):
  22. """
  23. input -> scale * input
  24. """
  25. return x * self.scale
  26. class FcosHead(nn.Module):
  27. def __init__(self, cfg, in_dim: int = 256,):
  28. super().__init__()
  29. # ------------------ Basic parameters -------------------
  30. self.cfg = cfg
  31. self.in_dim = in_dim
  32. self.out_dim = cfg.head_dim
  33. self.out_stride = cfg.out_stride
  34. self.num_classes = cfg.num_classes
  35. # ------------------ Network parameters -------------------
  36. ## classification head
  37. cls_heads = []
  38. self.cls_head_dim = cfg.head_dim
  39. for i in range(cfg.num_cls_head):
  40. if i == 0:
  41. cls_heads.append(ConvModule(in_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  42. else:
  43. cls_heads.append(ConvModule(self.cls_head_dim, self.cls_head_dim, kernel_size=3, padding=1, stride=1))
  44. ## bbox regression head
  45. reg_heads = []
  46. self.reg_head_dim = cfg.head_dim
  47. for i in range(cfg.num_reg_head):
  48. if i == 0:
  49. reg_heads.append(ConvModule(in_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  50. else:
  51. reg_heads.append(ConvModule(self.reg_head_dim, self.reg_head_dim, kernel_size=3, padding=1, stride=1))
  52. self.cls_heads = nn.Sequential(*cls_heads)
  53. self.reg_heads = nn.Sequential(*reg_heads)
  54. ## pred layers
  55. self.cls_pred = nn.Conv2d(self.cls_head_dim, cfg.num_classes, kernel_size=3, padding=1)
  56. self.reg_pred = nn.Conv2d(self.reg_head_dim, 4, kernel_size=3, padding=1)
  57. self.ctn_pred = nn.Conv2d(self.reg_head_dim, 1, kernel_size=3, padding=1)
  58. ## scale layers
  59. self.scales = nn.ModuleList(
  60. Scale() for _ in range(len(self.out_stride))
  61. )
  62. # init bias
  63. self._init_layers()
  64. def _init_layers(self):
  65. for module in [self.cls_heads, self.reg_heads, self.cls_pred, self.reg_pred, self.ctn_pred]:
  66. for layer in module.modules():
  67. if isinstance(layer, nn.Conv2d):
  68. torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
  69. if layer.bias is not None:
  70. torch.nn.init.constant_(layer.bias, 0)
  71. if isinstance(layer, nn.GroupNorm):
  72. torch.nn.init.constant_(layer.weight, 1)
  73. if layer.bias is not None:
  74. torch.nn.init.constant_(layer.bias, 0)
  75. # init the bias of cls pred
  76. init_prob = 0.01
  77. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  78. torch.nn.init.constant_(self.cls_pred.bias, bias_value)
  79. def get_anchors(self, level, fmp_size):
  80. """
  81. fmp_size: (List) [H, W]
  82. """
  83. # generate grid cells
  84. fmp_h, fmp_w = fmp_size
  85. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  86. # [H, W, 2] -> [HW, 2]
  87. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  88. anchors += 0.5
  89. anchors *= self.out_stride[level]
  90. return anchors
  91. def decode_boxes(self, pred_deltas, anchors):
  92. """
  93. pred_deltas: (List[Tensor]) [B, M, 4] or [M, 4] (l, t, r, b)
  94. anchors: (List[Tensor]) [1, M, 2] or [M, 2]
  95. """
  96. # x1 = x_anchor - l, x2 = x_anchor + r
  97. # y1 = y_anchor - t, y2 = y_anchor + b
  98. pred_x1y1 = anchors - pred_deltas[..., :2]
  99. pred_x2y2 = anchors + pred_deltas[..., 2:]
  100. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  101. return pred_box
  102. def forward(self, pyramid_feats):
  103. all_anchors = []
  104. all_cls_preds = []
  105. all_reg_preds = []
  106. all_box_preds = []
  107. all_ctn_preds = []
  108. for level, feat in enumerate(pyramid_feats):
  109. # ------------------- Decoupled head -------------------
  110. cls_feat = self.cls_heads(feat)
  111. reg_feat = self.reg_heads(feat)
  112. # ------------------- Generate anchor box -------------------
  113. B, _, H, W = cls_feat.size()
  114. fmp_size = [H, W]
  115. anchors = self.get_anchors(level, fmp_size) # [M, 4]
  116. anchors = anchors.to(cls_feat.device)
  117. # ------------------- Predict -------------------
  118. cls_pred = self.cls_pred(cls_feat)
  119. reg_pred = self.reg_pred(reg_feat)
  120. ctn_pred = self.ctn_pred(reg_feat)
  121. # ------------------- Process preds -------------------
  122. ## [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  123. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  124. ctn_pred = ctn_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  125. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  126. reg_pred = F.relu(self.scales[level](reg_pred)) * self.out_stride[level]
  127. ## Decode bbox
  128. box_pred = self.decode_boxes(reg_pred, anchors)
  129. all_anchors.append(anchors)
  130. all_cls_preds.append(cls_pred)
  131. all_reg_preds.append(reg_pred)
  132. all_box_preds.append(box_pred)
  133. all_ctn_preds.append(ctn_pred)
  134. outputs = {"pred_cls": all_cls_preds, # List [B, M, C]
  135. "pred_reg": all_reg_preds, # List [B, M, 4]
  136. "pred_box": all_box_preds, # List [B, M, 4]
  137. "pred_ctn": all_ctn_preds, # List [B, M, 1]
  138. "anchors": all_anchors, # List [B, M, 2]
  139. "strides": self.out_stride,
  140. }
  141. return outputs
  142. if __name__=='__main__':
  143. import time
  144. from thop import profile
  145. # Model config
  146. # YOLOv3-Base config
  147. class FcosBaseConfig(object):
  148. def __init__(self) -> None:
  149. # ---------------- Model config ----------------
  150. self.width = 0.50
  151. self.depth = 0.34
  152. self.out_stride = [8, 16, 32, 64]
  153. self.num_classes = 20
  154. ## Head
  155. self.head_dim = 256
  156. self.num_cls_head = 4
  157. self.num_reg_head = 4
  158. cfg = FcosBaseConfig()
  159. feat_dim = 256
  160. pyramid_feats = [torch.randn(1, feat_dim, 80, 80),
  161. torch.randn(1, feat_dim, 40, 40),
  162. torch.randn(1, feat_dim, 20, 20),
  163. torch.randn(1, feat_dim, 10, 10)]
  164. # Build a head
  165. head = FcosHead(cfg, feat_dim)
  166. # Inference
  167. t0 = time.time()
  168. outputs = head(pyramid_feats)
  169. t1 = time.time()
  170. print('Time: ', t1 - t0)
  171. print("====== FCOS Head output ======")
  172. for k in outputs:
  173. print(f" - shape of {k}: ", outputs[k].shape )
  174. flops, params = profile(head, inputs=(pyramid_feats, ), verbose=False)
  175. print('==============================')
  176. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  177. print('Params : {:.2f} M'.format(params / 1e6))