| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import torch
- from .box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
- def inverse_sigmoid(x, eps=1e-5):
- x = x.clamp(min=0., max=1.)
- return torch.log(x.clamp(min=eps) / (1 - x).clamp(min=eps))
- def get_contrastive_denoising_training_group(targets,
- num_classes,
- num_queries,
- class_embed,
- num_denoising=100,
- label_noise_ratio=0.5,
- box_noise_scale=1.0,):
- if num_denoising <= 0:
- return None, None, None, None
- num_gts = [len(t['labels']) for t in targets]
- device = targets[0]['labels'].device
-
- max_gt_num = max(num_gts)
- if max_gt_num == 0:
- return None, None, None, None
- num_group = num_denoising // max_gt_num
- num_group = 1 if num_group == 0 else num_group
- # pad gt to max_num of a batch
- bs = len(num_gts)
- input_query_class = torch.full([bs, max_gt_num], num_classes, dtype=torch.int32, device=device)
- input_query_bbox = torch.zeros([bs, max_gt_num, 4], device=device)
- pad_gt_mask = torch.zeros([bs, max_gt_num], dtype=torch.bool, device=device)
- for i in range(bs):
- num_gt = num_gts[i]
- if num_gt > 0:
- input_query_class[i, :num_gt] = targets[i]['labels']
- input_query_bbox[i, :num_gt] = targets[i]['boxes']
- pad_gt_mask[i, :num_gt] = 1
- # each group has positive and negative queries.
- input_query_class = input_query_class.tile([1, 2 * num_group])
- input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
- pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
- # positive and negative mask
- negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1], device=device)
- negative_gt_mask[:, max_gt_num:] = 1
- negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
- positive_gt_mask = 1 - negative_gt_mask
- # contrastive denoising training positive index
- positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
- dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
- dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts])
- # total denoising queries
- num_denoising = int(max_gt_num * 2 * num_group)
- if label_noise_ratio > 0:
- mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
- # randomly put a new one here
- new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
- input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
- if box_noise_scale > 0:
- known_bbox = box_cxcywh_to_xyxy(input_query_bbox)
- diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
- rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
- rand_part = torch.rand_like(input_query_bbox)
- rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
- rand_part *= rand_sign
- known_bbox += rand_part * diff
- known_bbox.clip_(min=0.0, max=1.0)
- input_query_bbox = box_xyxy_to_cxcywh(known_bbox)
- input_query_bbox = inverse_sigmoid(input_query_bbox)
- input_query_class = class_embed(input_query_class)
- tgt_size = num_denoising + num_queries
- # attn_mask = torch.ones([tgt_size, tgt_size], device=device) < 0
- attn_mask = torch.full([tgt_size, tgt_size], False, dtype=torch.bool, device=device)
- # match query cannot see the reconstruction
- attn_mask[num_denoising:, :num_denoising] = True
-
- # reconstruct cannot see each other
- for i in range(num_group):
- if i == 0:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
- if i == num_group - 1:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * i * 2] = True
- else:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * 2 * i] = True
-
- dn_meta = {
- "dn_positive_idx": dn_positive_idx,
- "dn_num_group": num_group,
- "dn_num_split": [num_denoising, num_queries]
- }
- return input_query_class, input_query_bbox, attn_mask, dn_meta
|