| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- import argparse
- import cv2
- import os
- import time
- import numpy as np
- from copy import deepcopy
- import torch
- # load transform
- from datasets import build_dataset, build_transform
- # load some utils
- from utils.misc import load_weight, compute_flops
- from config import build_config
- from models.detectors import build_model
- def parse_args():
- parser = argparse.ArgumentParser(description='Object Detection Lab')
- # Basic
- parser.add_argument('--cuda', action='store_true', default=False,
- help='use cuda.')
- parser.add_argument('--show', action='store_true', default=False,
- help='show the visulization results.')
- parser.add_argument('--save', action='store_true', default=False,
- help='save the visulization results.')
- parser.add_argument('--save_folder', default='det_results/', type=str,
- help='Dir to save results')
- parser.add_argument('-vt', '--visual_threshold', default=0.3, type=float,
- help='Final confidence threshold')
- parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
- help='resize window of cv2 for visualization.')
- parser.add_argument('--resave', action='store_true', default=False,
- help='resave checkpoints without optimizer state dict.')
- # Model
- parser.add_argument('-m', '--model', default='yolof_r18_c5_1x', type=str,
- help='build detector')
- parser.add_argument('--weight', default=None,
- type=str, help='Trained state_dict file path to open')
- parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
- help='fuse Conv & BN')
- # Dataset
- parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/COCO/',
- help='data root')
- parser.add_argument('-d', '--dataset', default='coco',
- help='coco, voc.')
- return parser.parse_args()
- def plot_bbox_labels(img, bbox, label=None, cls_color=None, text_scale=0.4):
- x1, y1, x2, y2 = bbox
- x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
- t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0]
- # plot bbox
- cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2)
-
- if label is not None:
- # plot title bbox
- cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * text_scale), y1), cls_color, -1)
- # put the test on the title bbox
- cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, text_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA)
- return img
- def visualize(img,
- bboxes,
- scores,
- labels,
- vis_thresh,
- class_colors,
- class_names):
- ts = 0.4
- for i, bbox in enumerate(bboxes):
- if scores[i] > vis_thresh:
- cls_id = int(labels[i])
- cls_color = class_colors[cls_id]
-
- mess = '%s: %.2f' % (class_names[cls_id], scores[i])
- img = plot_bbox_labels(img, bbox, mess, cls_color, text_scale=ts)
- return img
-
- @torch.no_grad()
- def run(args, model, device, dataset, transform, class_colors, class_names):
- num_images = len(dataset)
- save_path = os.path.join('det_results/', args.dataset, args.model)
- os.makedirs(save_path, exist_ok=True)
- for index, (image, _) in enumerate(dataset):
- print('Testing image {:d}/{:d}....'.format(index+1, num_images))
- orig_h, orig_w = image.height, image.width
- # PreProcess
- x, _ = transform(image)
- x = x.unsqueeze(0).to(device)
- # Inference
- t0 = time.time()
- bboxes, scores, labels = model(x)
- print("Infer. time: {}".format(time.time() - t0, "s"))
-
- # Rescale bboxes
- bboxes[..., 0::2] *= orig_w
- bboxes[..., 1::2] *= orig_h
- # vis detection
- image = np.array(image).astype(np.uint8)
- image = image[..., (2, 1, 0)].copy()
- img_processed = visualize(
- image, bboxes, scores, labels, args.visual_threshold, class_colors, class_names)
- if args.show:
- h, w = img_processed.shape[:2]
- sw, sh = int(w*args.window_scale), int(h*args.window_scale)
- cv2.namedWindow('detection', 0)
- cv2.resizeWindow('detection', sw, sh)
- cv2.imshow('detection', img_processed)
- cv2.waitKey(0)
- if args.save:
- # save result
- cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
- if __name__ == '__main__':
- args = parse_args()
- # cuda
- if args.cuda:
- print('use cuda')
- device = torch.device("cuda")
- else:
- device = torch.device("cpu")
- # Dataset & Model Config
- cfg = build_config(args)
- # Transform
- transform = build_transform(cfg, is_train=False)
- # Dataset
- dataset, dataset_info = build_dataset(args, is_train=False)
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255))
- for _ in range(dataset_info['num_classes'])]
- # Model
- model = build_model(args, cfg, dataset_info['num_classes'], is_val=False)
- model = load_weight(model, args.weight, args.fuse_conv_bn)
- model.to(device).eval()
- # Compute FLOPs and Params
- model_copy = deepcopy(model)
- model_copy.trainable = False
- model_copy.eval()
- compute_flops(
- model=model_copy,
- min_size=cfg['test_min_size'],
- max_size=cfg['test_max_size'],
- device=device)
- del model_copy
- # Resave model weight
- if args.resave:
- print('Resave: {}'.format(args.model.upper()))
- checkpoint = torch.load(args.weight, map_location='cpu')
- output_dir = 'weights/{}/{}/'.format(args.dataset, args.model)
- os.makedirs(output_dir, exist_ok=True)
- checkpoint_path = os.path.join(output_dir, "{}_pure.pth".format(args.model))
- torch.save({'model': model.state_dict(),
- 'mAP': checkpoint.pop("mAP"),
- 'epoch': checkpoint.pop("epoch")},
- checkpoint_path)
-
- print("================= DETECT =================")
- # run
- run(args, model, device, dataset, transform, class_colors, dataset_info['class_labels'])
|