hybrid_encoder.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. from typing import List
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. from ..basic.conv import BasicConv, RepCSPLayer
  6. from ..basic.transformer import TransformerEncoder
  7. # -------------- Feature Pyramid Network + Transformer Encoder --------------
  8. class HybridEncoder(nn.Module):
  9. def __init__(self,
  10. in_dims :List = [256, 512, 1024],
  11. out_dim :int = 256,
  12. num_blocks :int = 3,
  13. expansion :float = 1.0,
  14. act_type :str = 'silu',
  15. norm_type :str = 'GN',
  16. depthwise :bool = False,
  17. # Transformer's parameters
  18. num_heads :int = 8,
  19. num_layers :int = 1,
  20. ffn_dim :int = 1024,
  21. dropout :float = 0.1,
  22. pe_temperature :float = 10000.,
  23. en_act_type :str = 'gelu',
  24. en_pre_norm :bool = False,
  25. ) -> None:
  26. super(HybridEncoder, self).__init__()
  27. # ---------------- Basic parameters ----------------
  28. self.in_dims = in_dims
  29. self.out_dim = out_dim
  30. self.out_dims = [self.out_dim] * len(in_dims)
  31. self.num_heads = num_heads
  32. self.num_layers = num_layers
  33. self.ffn_dim = ffn_dim
  34. c3, c4, c5 = in_dims
  35. # ---------------- Input projs ----------------
  36. self.input_proj_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  37. self.input_proj_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  38. self.input_proj_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  39. # ---------------- Transformer Encoder ----------------
  40. self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
  41. num_heads = num_heads,
  42. num_layers = num_layers,
  43. ffn_dim = ffn_dim,
  44. pe_temperature = pe_temperature,
  45. dropout = dropout,
  46. act_type = en_act_type,
  47. pre_norm = en_pre_norm,
  48. )
  49. # ---------------- Top dwon FPN ----------------
  50. ## P5 -> P4
  51. self.reduce_layer_1 = BasicConv(self.out_dim, self.out_dim,
  52. kernel_size=1, padding=0, stride=1,
  53. act_type=act_type, norm_type=norm_type)
  54. self.top_down_layer_1 = RepCSPLayer(in_dim = self.out_dim * 2,
  55. out_dim = self.out_dim,
  56. num_blocks = num_blocks,
  57. expansion = expansion,
  58. act_type = act_type,
  59. norm_type = norm_type,
  60. )
  61. ## P4 -> P3
  62. self.reduce_layer_2 = BasicConv(self.out_dim, self.out_dim,
  63. kernel_size=1, padding=0, stride=1,
  64. act_type=act_type, norm_type=norm_type)
  65. self.top_down_layer_2 = RepCSPLayer(in_dim = self.out_dim * 2,
  66. out_dim = self.out_dim,
  67. num_blocks = num_blocks,
  68. expansion = expansion,
  69. act_type = act_type,
  70. norm_type = norm_type,
  71. )
  72. # ---------------- Bottom up PAN----------------
  73. ## P3 -> P4
  74. self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim,
  75. kernel_size=3, padding=1, stride=2,
  76. act_type=act_type, norm_type=norm_type, depthwise=depthwise)
  77. self.bottom_up_layer_1 = RepCSPLayer(in_dim = self.out_dim * 2,
  78. out_dim = self.out_dim,
  79. num_blocks = num_blocks,
  80. expansion = expansion,
  81. act_type = act_type,
  82. norm_type = norm_type,
  83. )
  84. ## P4 -> P5
  85. self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim,
  86. kernel_size=3, padding=1, stride=2,
  87. act_type=act_type, norm_type=norm_type, depthwise=depthwise)
  88. self.bottom_up_layer_2 = RepCSPLayer(in_dim = self.out_dim * 2,
  89. out_dim = self.out_dim,
  90. num_blocks = num_blocks,
  91. expansion = expansion,
  92. act_type = act_type,
  93. norm_type = norm_type,
  94. )
  95. self.init_weights()
  96. def init_weights(self):
  97. """Initialize the parameters."""
  98. for m in self.modules():
  99. if isinstance(m, torch.nn.Conv2d):
  100. # In order to be consistent with the source code,
  101. # reset the Conv2d initialization parameters
  102. m.reset_parameters()
  103. def forward(self, features):
  104. c3, c4, c5 = features
  105. # -------- Input projs --------
  106. p5 = self.input_proj_1(c5)
  107. p4 = self.input_proj_2(c4)
  108. p3 = self.input_proj_3(c3)
  109. # -------- Transformer encoder --------
  110. p5 = self.transformer_encoder(p5)
  111. # -------- Top down FPN --------
  112. p5_in = self.reduce_layer_1(p5)
  113. p5_up = F.interpolate(p5_in, size=p4.shape[2:])
  114. p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
  115. p4_in = self.reduce_layer_2(p4)
  116. p4_up = F.interpolate(p4_in, size=p3.shape[2:])
  117. p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
  118. # -------- Bottom up PAN --------
  119. p3_ds = self.dowmsample_layer_1(p3)
  120. p4 = self.bottom_up_layer_1(torch.cat([p4_in, p3_ds], dim=1))
  121. p4_ds = self.dowmsample_layer_2(p4)
  122. p5 = self.bottom_up_layer_2(torch.cat([p5_in, p4_ds], dim=1))
  123. out_feats = [p3, p4, p5]
  124. return out_feats