yjh0410 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă
..
README.md 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă
build.py 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă
criterion.py 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă
fcos.py 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă
matcher.py 264112178f build a new YOLO-Tutorial project for my book 1 an în urmă

README.md

FCOS: Fully Convolutional One-Stage Object Detector

Our FCOS-R50-1x baseline on COCO-val:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.391
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.579
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.428
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.326
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.559
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.625
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.685
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.758
  • FCOS
  • Real-time FCOS
Model scale FPS APval
0.5:0.95
APval
0.5
Weight Logs
FCOS_R18_1x 800,1333 34.1 52.2 ckpt Logs
FCOS_R50_1x 800,1333 39.1 57.9 ckpt Logs

Train FCOS

Single GPU

Taking training FCOS_R18_1x on COCO as the example,

python main.py --cuda -d coco --root path/to/coco -m fcos_r18_1x --batch_size 16 --eval_epoch 2

Multi GPU

Taking training FCOS_R18_1x on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root path/to/coco -m fcos_r18_1x --batch_size 16 --eval_epoch 2 

Test FCOS

Taking testing FCOS_R18_1x on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m fcos_r18_1x --weight path/to/fcos_r18_1x.pth -vt 0.4 --show 

Evaluate FCOS

Taking evaluating FCOS_R18_1x on COCO-val as the example,

python main.py --cuda -d coco --root path/to/coco -m fcos_r18_1x --resume path/to/fcos_r18_1x.pth --eval_first

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m fcos_r18_1x --weight path/to/weight -vt 0.4 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m fcos_r18_1x --weight path/to/weight -vt 0.4 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m fcos_r18_1x --weight path/to/weight -vt 0.4 --show --gif
Model scale FPS APval
0.5:0.95
APval
0.5
Weight Logs
FCOS_RT_R18_4x 512,736
FCOS_RT_R50_4x 512,736 43.9 60.2