import torch import torch.nn.functional as F from utils.box_ops import get_ious from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized from .matcher import SimOtaMatcher class SetCriterion(object): def __init__(self, cfg): self.cfg = cfg self.num_classes = cfg.num_classes # --------------- Loss config --------------- self.loss_cls_weight = cfg.loss_cls self.loss_box_weight = cfg.loss_box # --------------- Matcher config --------------- self.matcher = SimOtaMatcher(soft_center_radius = cfg.ota_soft_center_radius, topk_candidates = cfg.ota_topk_candidates, num_classes = cfg.num_classes, ) def loss_classes(self, pred_cls, target, beta=2.0): # Quality FocalLoss """ pred_cls: (torch.Tensor): [N, C]。 target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N) """ label, score = target pred_sigmoid = pred_cls.sigmoid() scale_factor = pred_sigmoid zerolabel = scale_factor.new_zeros(pred_cls.shape) ce_loss = F.binary_cross_entropy_with_logits( pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta) bg_class_ind = pred_cls.shape[-1] pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1) if pos.shape[0] > 0: pos_label = label[pos].long() scale_factor = score[pos] - pred_sigmoid[pos, pos_label] ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits( pred_cls[pos, pos_label], score[pos], reduction='none') * scale_factor.abs().pow(beta) return ce_loss def loss_bboxes(self, pred_box, gt_box, bbox_weight=None): ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou') loss_box = 1.0 - ious if bbox_weight is not None: loss_box = loss_box.squeeze(-1) * bbox_weight return loss_box def __call__(self, outputs, targets): """ outputs['pred_cls']: List(Tensor) [B, M, C] outputs['pred_reg']: List(Tensor) [B, M, 4] outputs['pred_box']: List(Tensor) [B, M, 4] outputs['strides']: List(Int) [8, 16, 32] output stride targets: (List) [dict{'boxes': [...], 'labels': [...], 'orig_size': ...}, ...] """ bs = outputs['pred_cls'].shape[0] device = outputs['pred_cls'].device anchors = outputs['anchors'] stride = outputs['stride'] # preds: [B, M, C] cls_preds = outputs['pred_cls'] box_preds = outputs['pred_box'] # --------------- label assignment --------------- cls_targets = [] box_targets = [] assign_metrics = [] for batch_idx in range(bs): tgt_labels = targets[batch_idx]["labels"].to(device) # [N,] tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4] assigned_result = self.matcher(stride=stride, anchors=anchors[..., :2], pred_cls=cls_preds[batch_idx].detach(), pred_box=box_preds[batch_idx].detach(), gt_labels=tgt_labels, gt_bboxes=tgt_bboxes ) cls_targets.append(assigned_result['assigned_labels']) box_targets.append(assigned_result['assigned_bboxes']) assign_metrics.append(assigned_result['assign_metrics']) # List[B, M, C] -> Tensor[BM, C] cls_targets = torch.cat(cls_targets, dim=0) box_targets = torch.cat(box_targets, dim=0) assign_metrics = torch.cat(assign_metrics, dim=0) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1) num_fgs = assign_metrics.sum() if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_fgs) num_fgs = (num_fgs / get_world_size()).clamp(1.0).item() bbox_weight = assign_metrics[pos_inds] # ------------------ Classification loss ------------------ cls_preds = cls_preds.view(-1, self.num_classes) loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics)) loss_cls = loss_cls.sum() / num_fgs # ------------------ Regression loss ------------------ box_preds_pos = box_preds.view(-1, 4)[pos_inds] box_targets_pos = box_targets[pos_inds] loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos, bbox_weight) loss_box = loss_box.sum() / num_fgs # total loss losses = self.loss_cls_weight * loss_cls + \ self.loss_box_weight * loss_box loss_dict = dict( loss_cls = loss_cls, loss_box = loss_box, losses = losses ) return loss_dict