# YOLOF: You Only Look One-level Feature - COCO | Model | scale | FPSFP32
RTX 4060 | APval
0.5:0.95 | APval
0.5 | Weight | Logs | | ---------------- | ---------- | ---------------------- | ---------------------- | --------------- | ------ | ----- | | YOLOF_R18_C5_1x | 800,1333 | 54 | 32.8 | 51.4 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolof_r18_c5_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOF-R18-C5-1x.txt) | | YOLOF_R50_C5_1x | 800,1333 | 21 | 37.7 | 57.2 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolof_r50_c5_1x_coco.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOF-R50-C5-1x.txt) | ## Train YOLOF ### Single GPU Taking training **YOLOF_R18_C5_1x** on COCO as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m yolof_r18_c5_1x --batch_size 16 --eval_epoch 2 ``` ### Multi GPU Taking training **YOLOF_R18_C5_1x** on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root path/to/coco -m yolof_r18_c5_1x --batch_size 16 --eval_epoch 2 ``` ## Test YOLOF Taking testing **YOLOF_R18_C5_1x** on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolof_r18_c5_1x --weight path/to/yolof_r18_c5_1x.pth -vt 0.4 --show ``` ## Evaluate YOLOF Taking evaluating **YOLOF_R18_C5_1x** on COCO-val as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m yolof_r18_c5_1x --resume path/to/yolof_r18_c5_1x.pth --eval_first ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolof_r18_c5_1x --weight path/to/weight -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolof_r18_c5_1x --weight path/to/weight -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolof_r18_c5_1x --weight path/to/weight -vt 0.4 --show --gif ```