import torch import torch.nn as nn import torch.nn.functional as F from typing import List from .rtcdet_basic import ELANLayerFPN, MDown, BasicConv # Modified YOLOv8's PaFPN class RTCPaFPN(nn.Module): def __init__(self, cfg, in_dims :List = [256, 512, 1024], ) -> None: super(RTCPaFPN, self).__init__() print('==============================') print('FPN: {}'.format("RTC-PaFPN")) # --------------------------- Basic Parameters --------------------------- self.in_dims = in_dims[::-1] self.out_dims = [round(256*cfg.channel_width), round(512*cfg.channel_width), round(1024*cfg.channel_width)] # ----------------------------- Yolov8's Top-down FPN ----------------------------- ## P5 -> P4 self.top_down_layer_1 = ELANLayerFPN(in_dim = self.in_dims[0] + self.in_dims[1], out_dim = round(512*cfg.channel_width), expansion = 0.5, num_blocks = cfg.fpn_num_blocks, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P3 self.top_down_layer_2 = ELANLayerFPN(in_dim = self.in_dims[2] + round(512*cfg.channel_width), out_dim = round(256*cfg.channel_width), expansion = 0.5, num_blocks = cfg.fpn_num_blocks, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ----------------------------- Yolov8's Bottom-up PAN ----------------------------- ## P3 -> P4 self.dowmsample_layer_1 = MDown(round(256*cfg.channel_width), round(256*cfg.channel_width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.channel_width) + round(512*cfg.channel_width), out_dim = round(512*cfg.channel_width), expansion = 0.5, num_blocks = cfg.fpn_num_blocks, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P5 self.dowmsample_layer_2 = MDown(round(512*cfg.channel_width), round(512*cfg.channel_width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.bottom_up_layer_2 = ELANLayerFPN(in_dim = round(512*cfg.channel_width) + self.in_dims[0], out_dim = round(1024*cfg.channel_width), expansion = 0.5, num_blocks = cfg.fpn_num_blocks, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, features): c3, c4, c5 = features # ------------------ Top down FPN ------------------ ## P5 -> P4 p5_up = F.interpolate(c5, scale_factor=2.0) p4 = self.top_down_layer_1(torch.cat([p5_up, c4], dim=1)) ## P4 -> P3 p4_up = F.interpolate(p4, scale_factor=2.0) p3 = self.top_down_layer_2(torch.cat([p4_up, c3], dim=1)) # ------------------ Bottom up FPN ------------------ ## p3 -> P4 p3_ds = self.dowmsample_layer_1(p3) p4 = self.bottom_up_layer_1(torch.cat([p3_ds, p4], dim=1)) ## P4 -> 5 p4_ds = self.dowmsample_layer_2(p4) p5 = self.bottom_up_layer_2(torch.cat([p4_ds, c5], dim=1)) out_feats = [p3, p4, p5] # [P3, P4, P5] return out_feats