import torch import torch.nn as nn # --------------------- Basic modules --------------------- class ConvModule(nn.Module): def __init__(self, in_dim: int, # in channels out_dim: int, # out channels kernel_size: int = 1, # kernel size stride:int = 1, # padding ): super(ConvModule, self).__init__() convs = [] convs.append(nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size//2, stride=stride, bias=False)) convs.append(nn.BatchNorm2d(out_dim)) convs.append(nn.SiLU(inplace=True)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) class Bottleneck(nn.Module): def __init__(self, in_dim: int, out_dim: int, expand_ratio: float = 0.5, shortcut: bool = False, ): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) # hidden channels self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv2 = ConvModule(inter_dim, out_dim, kernel_size=3, stride=1) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h class CSPBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, expand_ratio: float = 0.5, num_blocks: int = 1, shortcut: bool = False, ): super(CSPBlock, self).__init__() inter_dim = int(out_dim * expand_ratio) self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv2 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv3 = ConvModule(2 * inter_dim, out_dim, kernel_size=1) self.m = nn.Sequential(*[ Bottleneck(inter_dim, inter_dim, expand_ratio=1.0, shortcut=shortcut) for _ in range(num_blocks) ]) def forward(self, x): x1 = self.cv1(x) x2 = self.cv2(x) x3 = self.m(x1) out = self.cv3(torch.cat([x3, x2], dim=1)) return out