import torch import torch.nn as nn # --------------------- Basic modules --------------------- class ConvModule(nn.Module): def __init__(self, in_dim: int, # in channels out_dim: int, # out channels kernel_size: int = 1, # kernel size stride:int = 1, # padding ): super(ConvModule, self).__init__() convs = [] convs.append(nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size//2, stride=stride, bias=False)) convs.append(nn.BatchNorm2d(out_dim)) convs.append(nn.SiLU(inplace=True)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) class Bottleneck(nn.Module): def __init__(self, in_dim: int, out_dim: int, expand_ratio: float = 0.5, shortcut: bool = False, ): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) # hidden channels self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1) self.cv2 = ConvModule(inter_dim, out_dim, kernel_size=3, stride=1) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h class ResBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, num_blocks: int = 1, ): super(ResBlock, self).__init__() assert in_dim == out_dim self.m = nn.Sequential(*[ Bottleneck(in_dim, out_dim, expand_ratio=0.5, shortcut=True) for _ in range(num_blocks) ]) def forward(self, x): return self.m(x) class ConvBlocks(nn.Module): def __init__(self, in_dim: int, out_dim: int): super().__init__() inter_dim = out_dim // 2 self.convs = nn.Sequential( ConvModule(in_dim, out_dim, kernel_size=1), ConvModule(out_dim, inter_dim, kernel_size=3, stride=1), ConvModule(inter_dim, out_dim, kernel_size=1), ConvModule(out_dim, inter_dim, kernel_size=3, stride=1), ConvModule(inter_dim, out_dim, kernel_size=1) ) def forward(self, x): return self.convs(x)