from typing import List import torch import torch.nn as nn import torch.nn.functional as F from .yolov7_basic import BasicConv, ELANLayer, MDown # PaFPN-ELAN (YOLOv7's) class Yolov7PaFPN(nn.Module): def __init__(self, cfg, in_dims: List = [512, 1024, 512]): super(Yolov7PaFPN, self).__init__() # ----------------------------- Basic parameters ----------------------------- self.in_dims = in_dims c3, c4, c5 = in_dims # ----------------------------- Top-down FPN ----------------------------- ## P5 -> P4 self.reduce_layer_1 = BasicConv(c5, round(256*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.reduce_layer_2 = BasicConv(c4, round(256*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_1 = ELANLayer(in_dim = round(256*cfg.width) + round(256*cfg.width), out_dim = round(256*cfg.width), expansion = 0.5, num_blocks = round(3*cfg.depth), act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P3 self.reduce_layer_3 = BasicConv(round(256*cfg.width), round(128*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.reduce_layer_4 = BasicConv(c3, round(128*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_2 = ELANLayer(in_dim = round(128*cfg.width) + round(128*cfg.width), out_dim = round(128*cfg.width), expansion = 0.5, num_blocks = round(3*cfg.depth), act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ----------------------------- Bottom-up FPN ----------------------------- ## P3 -> P4 self.downsample_layer_1 = MDown(round(128*cfg.width), round(256*cfg.width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.bottom_up_layer_1 = ELANLayer(in_dim = round(256*cfg.width) + round(256*cfg.width), out_dim = round(256*cfg.width), expansion = 0.5, num_blocks = round(3*cfg.depth), act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P5 self.downsample_layer_2 = MDown(round(256*cfg.width), round(512*cfg.width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.bottom_up_layer_2 = ELANLayer(in_dim = round(512*cfg.width) + c5, out_dim = round(512*cfg.width), expansion = 0.5, num_blocks = round(3*cfg.depth), act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ----------------------------- Head conv layers ----------------------------- ## Head convs self.head_conv_1 = BasicConv(round(128*cfg.width), round(256*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.head_conv_2 = BasicConv(round(256*cfg.width), round(512*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.head_conv_3 = BasicConv(round(512*cfg.width), round(1024*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) # ---------------------- Yolov5's output projection ---------------------- self.out_layers = nn.ModuleList([ BasicConv(in_dim, round(cfg.head_dim*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) for in_dim in [round(256*cfg.width), round(512*cfg.width), round(1024*cfg.width)] ]) self.out_dims = [round(cfg.head_dim*cfg.width)] * 3 def forward(self, features): c3, c4, c5 = features ## P5 -> P4 p5 = self.reduce_layer_1(c5) p5_up = F.interpolate(p5, scale_factor=2.0) p4 = self.reduce_layer_2(c4) p4 = self.top_down_layer_1(torch.cat([p5_up, p4], dim=1)) ## P4 -> P3 p4_in = self.reduce_layer_3(p4) p4_up = F.interpolate(p4_in, scale_factor=2.0) p3 = self.reduce_layer_4(c3) p3 = self.top_down_layer_2(torch.cat([p4_up, p3], dim=1)) ## P3 -> P4 p3_ds = self.downsample_layer_1(p3) p4 = torch.cat([p3_ds, p4], dim=1) p4 = self.bottom_up_layer_1(p4) ## P4 -> P5 p4_ds = self.downsample_layer_2(p4) p5 = torch.cat([p4_ds, c5], dim=1) p5 = self.bottom_up_layer_2(p5) out_feats = [self.head_conv_1(p3), self.head_conv_2(p4), self.head_conv_3(p5)] # output proj layers out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj