# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Transforms and data augmentation for both image + bbox. """ import PIL import random import torch import torchvision import torchvision.transforms as T import torchvision.transforms.functional as F # ----------------- Basic transform functions ----------------- def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "masks" in target: target['masks'] = target['masks'].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target['masks'] = interpolate( target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image.size[::-1]) if "masks" in target: target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) return padded_image, target # ----------------- Basic transform ----------------- class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target=None): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict = None): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target=None): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomShift(object): def __init__(self, p=0.5, max_shift=32): self.p = p self.max_shift = max_shift def __call__(self, image, target=None): if random.random() < self.p: img_h, img_w = image.height, image.width shift_x = random.randint(-self.max_shift, self.max_shift) shift_y = random.randint(-self.max_shift, self.max_shift) shifted_image = F.affine(image, translate=[shift_x, shift_y], angle=0, scale=1.0, shear=0) target = target.copy() target["boxes"][..., [0, 2]] += shift_x target["boxes"][..., [1, 3]] += shift_y target["boxes"][..., [0, 2]] = target["boxes"][..., [0, 2]].clip(0, img_w) target["boxes"][..., [1, 3]] = target["boxes"][..., [1, 3]].clip(0, img_h) return shifted_image, target return image, target class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target=None): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target=None): return F.to_tensor(img), target class Normalize(object): def __init__(self, mean, std, normalize_coords=False): self.mean = mean self.std = std self.normalize_coords = normalize_coords def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None if self.normalize_coords: target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class RefineBBox(object): def __init__(self, min_box_size=1): self.min_box_size = min_box_size def __call__(self, img, target): boxes = target["boxes"].clone() labels = target["labels"].clone() tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2] min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0] keep = (min_tgt_size >= self.min_box_size) target["boxes"] = boxes[keep] target["labels"] = labels[keep] return img, target class ConvertBoxFormat(object): def __init__(self, box_format="xyxy"): self.box_format = box_format def __call__(self, image, target=None): # convert box format if self.box_format == "xyxy" or target is None: pass elif self.box_format == "xywh": target = target.copy() if "boxes" in target: boxes_xyxy = target["boxes"] boxes_xywh = torch.zeros_like(boxes_xyxy) boxes_xywh[..., :2] = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5 # cxcy boxes_xywh[..., 2:] = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2] # bwbh target["boxes"] = boxes_xywh else: raise NotImplementedError("Unknown box format: {}".format(self.box_format)) return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target=None): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string # build transforms def build_transform(cfg, is_train=False): # ---------------- Transform for Training ---------------- if is_train: transforms = [] trans_config = cfg.trans_config # build transform if not cfg.detr_style: for t in trans_config: if t['name'] == 'RandomHFlip': transforms.append(RandomHorizontalFlip()) if t['name'] == 'RandomResize': transforms.append(RandomResize(cfg.train_min_size, max_size=cfg.train_max_size)) if t['name'] == 'RandomSizeCrop': transforms.append(RandomSizeCrop(t['min_crop_size'], max_size=t['max_crop_size'])) if t['name'] == 'RandomShift': transforms.append(RandomShift(max_shift=t['max_shift'])) if t['name'] == 'RefineBBox': transforms.append(RefineBBox(min_box_size=t['min_box_size'])) transforms.extend([ ToTensor(), Normalize(cfg.pixel_mean, cfg.pixel_std, cfg.normalize_coords), ConvertBoxFormat(cfg.box_format) ]) # build transform for DETR-style detector else: transforms = [ RandomHorizontalFlip(), RandomSelect( RandomResize(cfg.train_min_size, max_size=cfg.train_max_size), Compose([ RandomResize(cfg.train_min_size2), RandomSizeCrop(*cfg.random_crop_size), RandomResize(cfg.train_min_size, max_size=cfg.train_max_size), ]) ), ToTensor(), Normalize(cfg.pixel_mean, cfg.pixel_std, cfg.normalize_coords), ConvertBoxFormat(cfg.box_format) ] # ---------------- Transform for Evaluating ---------------- else: transforms = [ RandomResize(cfg.test_min_size, max_size=cfg.test_max_size), ToTensor(), Normalize(cfg.pixel_mean, cfg.pixel_std, cfg.normalize_coords), ConvertBoxFormat(cfg.box_format) ] return Compose(transforms)