# --------------- Torch components --------------- import torch import torch.nn as nn # --------------- Model components --------------- from .gelan_backbone import GElanBackbone from .gelan_neck import SPPElan from .gelan_pafpn import GElanPaFPN from .gelan_head import GElanDetHead from .gelan_pred import GElanPredLayer # --------------- External components --------------- from utils.misc import multiclass_nms # G-ELAN proposed by YOLOv9 class GElan(nn.Module): def __init__(self, cfg, is_val = False, deploy = False, ) -> None: super(GElan, self).__init__() # ---------------------- Basic setting ---------------------- self.cfg = cfg self.deploy = deploy self.num_classes = cfg.num_classes ## Post-process parameters self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh self.no_multi_labels = False if is_val else True # ---------------------- Network Parameters ---------------------- ## Backbone self.backbone = GElanBackbone(cfg) self.neck = SPPElan(cfg, self.backbone.feat_dims[-1]) self.backbone.feat_dims[-1] = self.neck.out_dim ## PaFPN self.fpn = GElanPaFPN(cfg, self.backbone.feat_dims) ## Detection head self.head = GElanDetHead(cfg, self.fpn.out_dims) self.pred = GElanPredLayer(cfg, self.head.cls_head_dim, self.head.reg_head_dim) def switch_to_deploy(self,): for m in self.modules(): if hasattr(m, "fuse_convs"): m.fuse_convs() def post_process(self, cls_preds, box_preds): """ Input: cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1 box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1 Output: bboxes: np.array -> [N, 4] scores: np.array -> [N,] labels: np.array -> [N,] """ all_scores = [] all_labels = [] all_bboxes = [] for cls_pred_i, box_pred_i in zip(cls_preds, box_preds): cls_pred_i = cls_pred_i[0] box_pred_i = box_pred_i[0] if self.no_multi_labels: # [M,] scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1) # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred_i.size(0)) # topk candidates predicted_prob, topk_idxs = scores.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh scores = topk_scores[keep_idxs] topk_idxs = topk_idxs[keep_idxs] labels = labels[topk_idxs] bboxes = box_pred_i[topk_idxs] else: # [M, C] -> [MC,] scores_i = cls_pred_i.sigmoid().flatten() # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred_i.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores_i.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh scores = topk_scores[keep_idxs] topk_idxs = topk_idxs[keep_idxs] anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') labels = topk_idxs % self.num_classes bboxes = box_pred_i[anchor_idxs] all_scores.append(scores) all_labels.append(labels) all_bboxes.append(bboxes) scores = torch.cat(all_scores, dim=0) labels = torch.cat(all_labels, dim=0) bboxes = torch.cat(all_bboxes, dim=0) # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes) return bboxes, scores, labels def forward(self, x): # ---------------- Backbone ---------------- pyramid_feats = self.backbone(x) # ---------------- Neck: SPP ---------------- pyramid_feats[-1] = self.neck(pyramid_feats[-1]) # ---------------- Neck: PaFPN ---------------- pyramid_feats = self.fpn(pyramid_feats) # ---------------- Heads ---------------- cls_feats, reg_feats = self.head(pyramid_feats) # ---------------- Preds ---------------- outputs = self.pred(cls_feats, reg_feats) outputs['image_size'] = [x.shape[2], x.shape[3]] if not self.training: all_cls_preds = outputs['pred_cls'] all_box_preds = outputs['pred_box'] if self.deploy: cls_preds = torch.cat(all_cls_preds, dim=1)[0] box_preds = torch.cat(all_box_preds, dim=1)[0] scores = cls_preds.sigmoid() bboxes = box_preds # [n_anchors_all, 4 + C] outputs = torch.cat([bboxes, scores], dim=-1) else: # post process bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds) outputs = { "scores": scores, "labels": labels, "bboxes": bboxes } return outputs