import torch # ------------------------- WarmUp LR Scheduler ------------------------- ## Warmup LR Scheduler class LinearWarmUpScheduler(object): def __init__(self, base_lr=0.01, wp_iter=500, warmup_factor=0.00066667): self.base_lr = base_lr self.wp_iter = wp_iter self.warmup_factor = warmup_factor def set_lr(self, optimizer, lr): for param_group in optimizer.param_groups: init_lr = param_group['initial_lr'] ratio = init_lr / self.base_lr param_group['lr'] = lr * ratio def __call__(self, iter, optimizer): # warmup alpha = iter / self.wp_iter warmup_factor = self.warmup_factor * (1 - alpha) + alpha tmp_lr = self.base_lr * warmup_factor self.set_lr(optimizer, tmp_lr) ## Build WP LR Scheduler def build_wp_lr_scheduler(cfg): print('==============================') print('WarmUpScheduler: {}'.format(cfg.warmup)) print('--base_lr: {}'.format(cfg.base_lr)) print('--warmup_iters: {} ({})'.format(cfg.warmup_iters, cfg.warmup_iters * cfg.grad_accumulate)) print('--warmup_factor: {}'.format(cfg.warmup_factor)) if cfg.warmup == 'linear': wp_lr_scheduler = LinearWarmUpScheduler(cfg.base_lr, cfg.warmup_iters, cfg.warmup_factor) return wp_lr_scheduler # ------------------------- LR Scheduler ------------------------- def build_lr_scheduler(cfg, optimizer, resume=None): print('==============================') print('LR Scheduler: {}'.format(cfg.lr_scheduler)) if cfg.lr_scheduler == 'step': assert hasattr(cfg, 'lr_epoch') print('--lr_epoch: {}'.format(cfg.lr_epoch)) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=cfg.lr_epoch) elif cfg.lr_scheduler == 'cosine': pass if resume is not None and resume.lower() != "none": print('Load lr scheduler from the checkpoint: ', resume) checkpoint = torch.load(resume) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("lr_scheduler") lr_scheduler.load_state_dict(checkpoint_state_dict) return lr_scheduler