import torch import torch.nn as nn from ..basic.conv import ConvModule # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type="relu", norm_type="BN"): super().__init__() inter_dim = int(in_dim * expand_ratio) self.out_dim = out_dim self.cv1 = ConvModule(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = ConvModule(inter_dim * 4, out_dim, k=1, act_type=act_type, norm_type=norm_type) self.m = nn.MaxPool2d(kernel_size=pooling_size, stride=1, padding=pooling_size // 2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))