import cv2 import os import torch import numpy as np import matplotlib.pyplot as plt # -------------------------- For Detection Task -------------------------- ## visualize the input data during the training stage def vis_data(images, targets, masks=None, class_labels=None, normalized_coord=False, box_format='xyxy'): """ images: (tensor) [B, 3, H, W] masks: (Tensor) [B, H, W] targets: (list) a list of targets """ batch_size = images.size(0) np.random.seed(0) class_colors = [(np.random.randint(255), np.random.randint(255), np.random.randint(255)) for _ in range(80)] pixel_means = [0.485, 0.456, 0.406] pixel_std = [0.229, 0.224, 0.225] for bi in range(batch_size): target = targets[bi] # to numpy image = images[bi].permute(1, 2, 0).cpu().numpy() not_mask = ~masks[bi] img_h = not_mask.cumsum(0, dtype=torch.int32)[-1, 0] img_w = not_mask.cumsum(1, dtype=torch.int32)[0, -1] # denormalize image = (image * pixel_std + pixel_means) * 255 image = image[:, :, (2, 1, 0)].astype(np.uint8) image = image.copy() tgt_boxes = target['boxes'].float() tgt_labels = target['labels'].long() for box, label in zip(tgt_boxes, tgt_labels): box_ = box.clone() if normalized_coord: box_[..., [0, 2]] *= img_w box_[..., [1, 3]] *= img_h if box_format == 'xywh': box_x1y1 = box_[..., :2] - box_[..., 2:] * 0.5 box_x2y2 = box_[..., :2] + box_[..., 2:] * 0.5 box_ = torch.cat([box_x1y1, box_x2y2], dim=-1) x1, y1, x2, y2 = box_.long().cpu().numpy() cls_id = label.item() color = class_colors[cls_id] # draw box cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) if class_labels is not None: class_name = class_labels[cls_id] # plot title bbox t_size = cv2.getTextSize(class_name, 0, fontScale=1, thickness=2)[0] cv2.rectangle(image, (x1, y1-t_size[1]), (int(x1 + t_size[0] * 0.4), y1), color, -1) # put the test on the title bbox cv2.putText(image, class_name, (x1, y1 - 5), 0, 0.4, (0, 0, 0), 1, lineType=cv2.LINE_AA) cv2.imshow('train target', image) cv2.waitKey(0) ## Draw bbox & label on the image def plot_bbox_labels(img, bbox, label=None, cls_color=None, text_scale=0.4): x1, y1, x2, y2 = bbox x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0] # plot bbox cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2) if label is not None: # plot title bbox cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * text_scale), y1), cls_color, -1) # put the test on the title bbox cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, text_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA) return img ## Visualize the detection results def visualize(image, bboxes, scores, labels, class_colors, class_names): ts = 0.4 for i, bbox in enumerate(bboxes): cls_id = int(labels[i]) cls_color = class_colors[cls_id] mess = '%s: %.2f' % (class_names[cls_id], scores[i]) image = plot_bbox_labels(image, bbox, mess, cls_color, text_scale=ts) return image