import torch import torch.nn as nn try: from .modules import ConvModule except: from modules import ConvModule # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, in_dim, out_dim): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = in_dim // 2 self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, padding=0, stride=1) self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1) self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) if __name__=='__main__': import time from thop import profile # Model config # Build a neck in_dim = 512 out_dim = 512 neck = SPPF(in_dim, out_dim) # Inference x = torch.randn(1, in_dim, 20, 20) t0 = time.time() output = neck(x) t1 = time.time() print('Time: ', t1 - t0) print('Neck output: ', output.shape) flops, params = profile(neck, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))