# YOLOv9 (GElan): - VOC | Model | Batch | Scale | APval
0.5 | Weight | Logs | |-------------|-------|-------|-------------------|--------|--------| | YOLOv9-S | 1xb16 | 640 | | [ckpt]() | [log]() | - COCO | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | Logs | |-------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------| | YOLOv9-S | 1xb16 | 640 | | | 26.9 | 8.9 | | | ## Train YOLOv9 ### Single GPU Taking training YOLOv9-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov9_s -bs 16 --fp16 ``` ### Multi GPU Taking training YOLOv9-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m yolov9_s -bs 256 --fp16 ``` ## Test YOLOv9 Taking testing YOLOv9-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov9_s --weight path/to/yolov9.pth --show ``` ## Evaluate YOLOv9 Taking evaluating YOLOv9-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov9_s --weight path/to/yolov9.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov9_s --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov9_s --weight path/to/weight --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov9_s --weight path/to/weight --show --gif ```