import torch import torch.nn as nn try: from .modules import ConvModule except: from modules import ConvModule # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, in_dim, out_dim): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = in_dim // 2 self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, padding=0, stride=1) self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1) self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) # Initialize all layers self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) if __name__=='__main__': from thop import profile # YOLOv1 configuration class Yolov1BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Neck self.neck_expand_ratio = 0.5 self.spp_pooling_size = 5 cfg = Yolov1BaseConfig() # Build a neck in_dim = 512 out_dim = 512 model = SPPF(cfg, 512, 512) # Randomly generate a input data x = torch.randn(2, in_dim, 20, 20) # Inference output = model(x) print(' - the shape of input : ', x.shape) print(' - the shape of output : ', output.shape) x = torch.randn(1, in_dim, 20, 20) flops, params = profile(model, inputs=(x, ), verbose=False) print('============== FLOPs & Params ================') print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2)) print(' - Params : {:.2f} M'.format(params / 1e6))