# Yolof Config def build_yolof_config(args): if args.model == 'yolof_r18': return YolofR18Config() elif args.model == 'yolof_r50': return YolofR50Config() else: raise NotImplementedError("No config for model: {}".format(args.model)) # Fcos-Base config class YolofBaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Backbone self.backbone = 'resnet50' self.use_pretrained = True ## Encoder self.neck_expand_ratio = 0.25 self.neck_dilations = [2, 4, 6, 8] ## Head self.head_dim = 512 self.num_cls_head = 2 self.num_reg_head = 4 # ---------------- Post-process config ---------------- ## Post process self.val_topk = 1000 self.val_conf_thresh = 0.05 self.val_nms_thresh = 0.6 self.test_topk = 300 self.test_conf_thresh = 0.3 self.test_nms_thresh = 0.45 # ---------------- Assignment config ---------------- ## Matcher self.center_clamp = 32 self.match_topk_candidates = 4 self.match_iou_thresh = 0.15 self.ignore_thresh = 0.7 self.anchor_size = [[32, 32], [64, 64], [128, 128], [256, 256], [512, 512]] ## Loss weight self.focal_loss_alpha = 0.25 self.focal_loss_gamma = 2.0 self.loss_cls = 1.0 self.loss_reg = 1.0 # ---------------- ModelEMA config ---------------- self.use_ema = False self.ema_decay = 0.9998 self.ema_tau = 2000 # ---------------- Optimizer config ---------------- self.trainer = 'simple' self.optimizer = 'adamw' self.base_lr = 0.0001 # base_lr = per_image_lr * batch_size self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio self.bk_lr_ratio = 1.0 self.batch_size_base = 64 self.momentum = 0.9 self.weight_decay = 0.0001 self.clip_max_norm = 10.0 self.warmup_bias_lr = 0.0 self.warmup_momentum = 0.9 # ---------------- Lr Scheduler config ---------------- self.warmup_iters = 500 self.lr_scheduler = "cosine" self.max_epoch = 150 self.eval_epoch = 10 self.no_aug_epoch = -1 # ---------------- Data process config ---------------- self.aug_type = 'yolo' self.mosaic_prob = 0.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 # approximated by the YOLOX's mixup self.multi_scale = [0.5, 1.5] # multi scale: [img_size * 0.5, img_size * 1.5] ## Pixel mean & std self.pixel_mean = [0., 0., 0.] self.pixel_std = [255., 255., 255.] ## Transforms self.train_img_size = 640 self.test_img_size = 640 self.affine_params = { 'degrees': 0.0, 'translate': 0.1, 'scale': [0.5, 1.5], 'shear': 0.0, 'perspective': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, } def print_config(self): config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')} for k, v in config_dict.items(): print("{} : {}".format(k, v)) # YOLOv2-R18 class YolofR18Config(YolofBaseConfig): def __init__(self) -> None: super().__init__() self.backbone = 'resnet18' # YOLOv2-R50 class YolofR50Config(YolofBaseConfig): def __init__(self) -> None: super().__init__() # TODO: Try your best.