# General Image Classification Laboratory ## Train For example, we are going to train `ConvNet` designed in this repo, so we can use the following command: ```Shell cd Vision-Pretraining-Tutorial/image_classification/ python main.py --cuda \ --dataset cifar \ --model convnet \ --batch_size 256 \ --optimizer adamw \ --base_lr 1e-3 \ --min_lr 1e-6 ``` ## Evaluate - Evaluate the `top1 & top5` accuracy: ```Shell cd Vision-Pretraining-Tutorial/image_classification/ python main.py --cuda \ --dataset cifar \ --model convnet \ --batch_size 256 \ --eval \ --resume path/to/checkpoint ```