import torch import torch.nn as nn try: from .modules import ConvModule, C2fBlock except: from modules import ConvModule, C2fBlock # IN1K pretrained weight pretrained_urls = { 'n': "https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/in1k_pretrained_weight/elandarknet_n_in1k_62.1.pth", 's': "https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/in1k_pretrained_weight/elandarknet_s_in1k_71.3.pth", 'm': "https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/in1k_pretrained_weight/elandarknet_m_in1k_75.7.pth", 'l': "https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/in1k_pretrained_weight/elandarknet_l_in1k_77.3.pth", 'x': None, } # ---------------------------- Basic functions ---------------------------- class Yolov8Backbone(nn.Module): def __init__(self, cfg): super(Yolov8Backbone, self).__init__() # ------------------ Basic setting ------------------ self.model_scale = cfg.model_scale self.feat_dims = [round(64 * cfg.width), round(128 * cfg.width), round(256 * cfg.width), round(512 * cfg.width), round(512 * cfg.width * cfg.ratio)] # ------------------ Network setting ------------------ ## P1/2 self.layer_1 = ConvModule(3, self.feat_dims[0], kernel_size=3, padding=1, stride=2) # P2/4 self.layer_2 = nn.Sequential( ConvModule(self.feat_dims[0], self.feat_dims[1], kernel_size=3, padding=1, stride=2), C2fBlock(in_dim = self.feat_dims[1], out_dim = self.feat_dims[1], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P3/8 self.layer_3 = nn.Sequential( ConvModule(self.feat_dims[1], self.feat_dims[2], kernel_size=3, padding=1, stride=2), C2fBlock(in_dim = self.feat_dims[2], out_dim = self.feat_dims[2], num_blocks = round(6*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P4/16 self.layer_4 = nn.Sequential( ConvModule(self.feat_dims[2], self.feat_dims[3], kernel_size=3, padding=1, stride=2), C2fBlock(in_dim = self.feat_dims[3], out_dim = self.feat_dims[3], num_blocks = round(6*cfg.depth), expansion = 0.5, shortcut = True, ) ) # P5/32 self.layer_5 = nn.Sequential( ConvModule(self.feat_dims[3], self.feat_dims[4], kernel_size=3, padding=1, stride=2), C2fBlock(in_dim = self.feat_dims[4], out_dim = self.feat_dims[4], num_blocks = round(3*cfg.depth), expansion = 0.5, shortcut = True, ) ) # Initialize all layers self.init_weights() # Load imagenet pretrained weight if cfg.use_pretrained: self.load_pretrained() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): m.reset_parameters() def load_pretrained(self): url = pretrained_urls[self.model_scale] if url is not None: print('Loading backbone pretrained weight from : {}'.format(url)) # checkpoint state dict checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = self.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print('Unused key: ', k) # load the weight self.load_state_dict(checkpoint_state_dict) else: print('No pretrained weight for model scale: {}.'.format(self.model_scale)) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs if __name__ == '__main__': import time from thop import profile # YOLOv8 config class BaseConfig(object): def __init__(self) -> None: self.use_pretrained = False self.width = 0.50 self.depth = 0.34 self.ratio = 2.00 self.model_scale = "s" cfg = BaseConfig() # Build backbone model = Yolov8Backbone(cfg) # Randomly generate a input data x = torch.randn(2, 3, 640, 640) # Inference outputs = model(x) print(' - the shape of input : ', x.shape) for out in outputs: print(' - the shape of output : ', out.shape) x = torch.randn(1, 3, 640, 640) flops, params = profile(model, inputs=(x, ), verbose=False) print('============== FLOPs & Params ================') print(' - FLOPs : {:.2f} G'.format(flops / 1e9 * 2)) print(' - Params : {:.2f} M'.format(params / 1e6))