import torch import torch.nn as nn try: from .modules import ConvModule except: from modules import ConvModule # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, cfg, in_dim, out_dim): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = in_dim // 2 self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = ConvModule(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type="silu") self.cv2 = ConvModule(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type="silu") self.m = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))