import torch import torch.nn as nn from .yolov7_af_basic import BasicConv # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv7-AF by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov7-AF """ def __init__(self, cfg, in_dim, out_dim, expansion=0.5): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = round(in_dim * expansion) self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.cv2 = BasicConv(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # SPPF block with CSP module class SPPFBlockCSP(nn.Module): """ CSP Spatial Pyramid Pooling Block """ def __init__(self, cfg, in_dim, out_dim): super(SPPFBlockCSP, self).__init__() inter_dim = int(in_dim * cfg.neck_expand_ratio) self.out_dim = out_dim self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.module = nn.Sequential( BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise), SPPF(cfg, inter_dim, inter_dim, expansion=1.0), BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise), ) self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) # Initialize all layers self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): x1 = self.cv1(x) x2 = self.module(self.cv2(x)) y = self.cv3(torch.cat([x1, x2], dim=1)) return y if __name__=='__main__': import time from thop import profile # Model config # YOLOv7-AF-Base config class Yolov7AFBaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Neck self.neck_act = 'lrelu' self.neck_norm = 'BN' self.neck_depthwise = False self.neck_expand_ratio = 0.5 self.spp_pooling_size = 5 cfg = Yolov7AFBaseConfig() # Build a head in_dim = 512 out_dim = 512 neck = SPPF(cfg, in_dim, out_dim) # Inference x = torch.randn(1, in_dim, 20, 20) t0 = time.time() output = neck(x) t1 = time.time() print('Time: ', t1 - t0) print('Neck output: ', output.shape) flops, params = profile(neck, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))