# --------------- Torch components --------------- import torch import torch.nn as nn # --------------- Model components --------------- from .yolov7_af_backbone import Yolov7TBackbone, Yolov7LBackbone from .yolov7_af_neck import SPPFBlockCSP from .yolov7_af_pafpn import Yolov7PaFPN from .yolov7_af_head import Yolov7DetHead from .yolov7_af_pred import Yolov7AFDetPredLayer # --------------- External components --------------- from utils.misc import multiclass_nms # Yolov7AF class Yolov7AF(nn.Module): def __init__(self, cfg, is_val = False, ) -> None: super(Yolov7AF, self).__init__() # ---------------------- Basic setting ---------------------- assert cfg.scale in ["t", "l", "x"] self.cfg = cfg self.num_classes = cfg.num_classes ## Post-process parameters self.topk_candidates = cfg.val_topk if is_val else cfg.test_topk self.conf_thresh = cfg.val_conf_thresh if is_val else cfg.test_conf_thresh self.nms_thresh = cfg.val_nms_thresh if is_val else cfg.test_nms_thresh self.no_multi_labels = False if is_val else True # ---------------------- Network Parameters ---------------------- ## Backbone self.backbone = Yolov7TBackbone(cfg) if cfg.scale == "t" else Yolov7LBackbone(cfg) self.pyramid_feat_dims = self.backbone.feat_dims[-3:] ## Neck: SPP self.neck = SPPFBlockCSP(cfg, self.pyramid_feat_dims[-1], self.pyramid_feat_dims[-1]//2) self.pyramid_feat_dims[-1] = self.neck.out_dim ## Neck: FPN self.fpn = Yolov7PaFPN(cfg, self.pyramid_feat_dims) ## Head self.head = Yolov7DetHead(cfg, self.fpn.out_dims) ## Pred self.pred = Yolov7AFDetPredLayer(cfg) def post_process(self, obj_preds, cls_preds, box_preds): """ We process predictions at each scale hierarchically Input: obj_preds: List[torch.Tensor] -> [[B, M, 1], ...], B=1 cls_preds: List[torch.Tensor] -> [[B, M, C], ...], B=1 box_preds: List[torch.Tensor] -> [[B, M, 4], ...], B=1 Output: bboxes: np.array -> [N, 4] scores: np.array -> [N,] labels: np.array -> [N,] """ all_scores = [] all_labels = [] all_bboxes = [] for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds): obj_pred_i = obj_pred_i[0] cls_pred_i = cls_pred_i[0] box_pred_i = box_pred_i[0] if self.no_multi_labels: # [M,] scores, labels = torch.max( torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()), dim=1) # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred_i.size(0)) # topk candidates predicted_prob, topk_idxs = scores.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh scores = topk_scores[keep_idxs] topk_idxs = topk_idxs[keep_idxs] labels = labels[topk_idxs] bboxes = box_pred_i[topk_idxs] else: # [M, C] -> [MC,] scores_i = torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid()).flatten() # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_pred_i.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores_i.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh scores = topk_scores[keep_idxs] topk_idxs = topk_idxs[keep_idxs] anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') labels = topk_idxs % self.num_classes bboxes = box_pred_i[anchor_idxs] all_scores.append(scores) all_labels.append(labels) all_bboxes.append(bboxes) scores = torch.cat(all_scores, dim=0) labels = torch.cat(all_labels, dim=0) bboxes = torch.cat(all_bboxes, dim=0) # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes) return bboxes, scores, labels def forward(self, x): # ---------------- Backbone ---------------- pyramid_feats = self.backbone(x) # ---------------- Neck: SPP ---------------- pyramid_feats[-1] = self.neck(pyramid_feats[-1]) # ---------------- Neck: PaFPN ---------------- pyramid_feats = self.fpn(pyramid_feats) # ---------------- Heads ---------------- cls_feats, reg_feats = self.head(pyramid_feats) # ---------------- Preds ---------------- outputs = self.pred(cls_feats, reg_feats) outputs['image_size'] = [x.shape[2], x.shape[3]] if not self.training: all_obj_preds = outputs['pred_obj'] all_cls_preds = outputs['pred_cls'] all_box_preds = outputs['pred_box'] # post process bboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds) outputs = { "scores": scores, "labels": labels, "bboxes": bboxes } return outputs