import torch import torch.nn as nn from typing import List # --------------------- Basic modules --------------------- def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() else: raise NotImplementedError def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) elif norm_type is None: return nn.Identity() else: raise NotImplementedError class BasicConv(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size padding=0, # padding stride=1, # padding dilation=1, # dilation act_type :str = 'lrelu', # activation norm_type :str = 'BN', # normalization depthwise :bool = False ): super(BasicConv, self).__init__() self.depthwise = depthwise use_bias = False if norm_type is not None else True if not depthwise: self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=1, bias=use_bias) self.norm = get_norm(norm_type, out_dim) else: self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias) self.norm1 = get_norm(norm_type, in_dim) self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1) self.norm2 = get_norm(norm_type, out_dim) self.act = get_activation(act_type) def forward(self, x): if not self.depthwise: return self.act(self.norm(self.conv(x))) else: # Depthwise conv x = self.norm1(self.conv1(x)) # Pointwise conv x = self.act(self.norm2(self.conv2(x))) return x # ---------------------------- Basic Modules ---------------------------- class YoloBottleneck(nn.Module): def __init__(self, in_dim :int, out_dim :int, kernel_size :List = [1, 3], expansion :float = 0.5, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False, ) -> None: super(YoloBottleneck, self).__init__() inter_dim = int(out_dim * expansion) # ----------------- Network setting ----------------- self.conv_layer1 = BasicConv(in_dim, inter_dim, kernel_size=kernel_size[0], padding=kernel_size[0]//2, stride=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.conv_layer2 = BasicConv(inter_dim, out_dim, kernel_size=kernel_size[1], padding=kernel_size[1]//2, stride=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.conv_layer2(self.conv_layer1(x)) return x + h if self.shortcut else h class CSPBlock(nn.Module): def __init__(self, in_dim, out_dim, num_blocks :int = 1, expansion :float = 0.5, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False, ): super(CSPBlock, self).__init__() # ---------- Basic parameters ---------- self.num_blocks = num_blocks self.expansion = expansion self.shortcut = shortcut inter_dim = round(out_dim * expansion) # ---------- Model parameters ---------- self.conv_layer_1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.conv_layer_2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.conv_layer_3 = BasicConv(inter_dim * 2, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.module = nn.Sequential(*[YoloBottleneck(inter_dim, inter_dim, kernel_size = [1, 3], expansion = 1.0, shortcut = shortcut, act_type = act_type, norm_type = norm_type, depthwise = depthwise) for _ in range(num_blocks) ]) def forward(self, x): x1 = self.conv_layer_1(x) x2 = self.module(self.conv_layer_2(x)) out = self.conv_layer_3(torch.cat([x1, x2], dim=1)) return out