import torch import torch.nn as nn try: from .resnet import build_resnet except: from resnet import build_resnet # --------------------- Yolov1's Backbone ----------------------- class Yolov1Backbone(nn.Module): def __init__(self, cfg): super().__init__() self.backbone, self.feat_dim = build_resnet(cfg.backbone, cfg.use_pretrained) def forward(self, x): c5 = self.backbone(x) return c5 if __name__=='__main__': import time from thop import profile # YOLOv8-Base config class Yolov1BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Backbone self.backbone = 'resnet18' self.use_pretrained = True cfg = Yolov1BaseConfig() # Build backbone model = Yolov1Backbone(cfg) # Inference x = torch.randn(1, 3, 640, 640) t0 = time.time() output = model(x) t1 = time.time() print('Time: ', t1 - t0) print(output.shape) flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))