# YOLOv8: | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | ckpt | logs | |-----------|--------|-------|------------------------|-------------------|-------------------|--------------------|--------|------| | YOLOv8-S | 8xb16 | 640 | | | | | | | ## Train YOLO ### Single GPU Taking training YOLOv8-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov8_s -bs 16 --fp16 ``` ### Multi GPU Taking training YOLO on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root /data/datasets/ -m yolov8_s -bs 128 --fp16 --sybn ``` ## Test YOLO Taking testing YOLO on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolo.pth --show ``` ## Evaluate YOLO Taking evaluating YOLO on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolo.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov8_s --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov8_s --weight path/to/weight --show ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov8_s --weight path/to/weight --show ```