# yolo Config def build_yolov7af_config(args): if args.model == 'yolov7_af_t': return Yolov7AFTConfig() elif args.model == 'yolov7_af_l': return Yolov7AFLConfig() else: raise NotImplementedError("No config for model: {}".format(args.model)) # YOLOv7AF-Base config class Yolov7AFBaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.width = 1.0 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 self.scale = "b" ## Backbone self.bk_act = 'silu' self.bk_norm = 'BN' self.bk_depthwise = False self.use_pretrained = True ## Neck self.neck_act = 'silu' self.neck_norm = 'BN' self.neck_depthwise = False self.neck_expand_ratio = 0.5 self.spp_pooling_size = 5 ## FPN self.fpn_act = 'silu' self.fpn_norm = 'BN' self.fpn_depthwise = False self.fpn_expansions = [0.5, 0.5] self.fpn_block_bw = 4 self.fpn_block_dw = 1 ## Head self.head_act = 'silu' self.head_norm = 'BN' self.head_depthwise = False self.head_dim = 256 self.num_cls_head = 2 self.num_reg_head = 2 # ---------------- Post-process config ---------------- ## Post process self.val_topk = 1000 self.val_conf_thresh = 0.001 self.val_nms_thresh = 0.7 self.test_topk = 100 self.test_conf_thresh = 0.4 self.test_nms_thresh = 0.5 # ---------------- Assignment config ---------------- ## Matcher self.ota_center_sampling_radius = 2.5 self.ota_topk_candidate = 10 ## Loss weight self.loss_obj = 1.0 self.loss_cls = 1.0 self.loss_box = 5.0 # ---------------- ModelEMA config ---------------- self.use_ema = True self.ema_decay = 0.9998 self.ema_tau = 2000 # ---------------- Optimizer config ---------------- self.trainer = 'yolo' self.optimizer = 'adamw' self.per_image_lr = 0.001 / 64 self.base_lr = None # base_lr = per_image_lr * batch_size self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio self.momentum = 0.9 self.weight_decay = 0.05 self.clip_max_norm = 35.0 self.warmup_bias_lr = 0.1 self.warmup_momentum = 0.8 # ---------------- Lr Scheduler config ---------------- self.warmup_epoch = 3 self.lr_scheduler = "cosine" self.max_epoch = 300 self.eval_epoch = 10 self.no_aug_epoch = 20 # ---------------- Data process config ---------------- self.aug_type = 'yolo' self.box_format = 'xyxy' self.normalize_coords = False self.mosaic_prob = 1.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 # approximated by the YOLOX's mixup self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25] ## Pixel mean & std self.pixel_mean = [0., 0., 0.] self.pixel_std = [255., 255., 255.] ## Transforms self.train_img_size = 640 self.test_img_size = 640 self.use_ablu = True self.affine_params = { 'degrees': 0.0, 'translate': 0.2, 'scale': [0.1, 2.0], 'shear': 0.0, 'perspective': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, } def print_config(self): config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')} for k, v in config_dict.items(): print("{} : {}".format(k, v)) # YOLOv7-S class Yolov7AFTConfig(Yolov7AFBaseConfig): def __init__(self) -> None: super().__init__() # ---------------- Model config ---------------- self.width = 0.50 self.scale = "t" self.use_pretrained = True self.fpn_expansions = [0.5, 0.5] self.fpn_block_bw = 2 self.fpn_block_dw = 1 # ---------------- Data process config ---------------- self.mosaic_prob = 1.0 self.mixup_prob = 0.0 self.copy_paste = 0.5 # YOLOv7-L class Yolov7AFLConfig(Yolov7AFBaseConfig): def __init__(self) -> None: super().__init__() # ---------------- Model config ---------------- self.width = 1.0 self.scale = "l" self.fpn_expansions = [0.5, 0.5] self.fpn_block_bw = 4 self.fpn_block_dw = 1 # ---------------- Data process config ---------------- self.mosaic_prob = 1.0 self.mixup_prob = 0.1 self.copy_paste = 0.5