# yolo Config def build_yolov2_config(args): if args.model == 'yolov2_r18': return Yolov2R18Config() else: raise NotImplementedError("No config for model: {}".format(args.model)) # YOLOv2-Base config class Yolov2BaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.out_stride = 32 self.max_stride = 32 ## Backbone self.backbone = 'resnet50' self.use_pretrained = True ## Neck self.neck_act = 'lrelu' self.neck_norm = 'BN' self.neck_depthwise = False self.neck_expand_ratio = 0.5 self.spp_pooling_size = 5 ## Head self.head_act = 'lrelu' self.head_norm = 'BN' self.head_depthwise = False self.head_dim = 512 self.num_cls_head = 2 self.num_reg_head = 2 self.anchor_sizes = [[17, 25], [55, 75], [92, 206], [202, 21], [289, 311]] # ---------------- Post-process config ---------------- ## Post process self.val_topk = 1000 self.val_conf_thresh = 0.001 self.val_nms_thresh = 0.7 self.test_topk = 100 self.test_conf_thresh = 0.2 self.test_nms_thresh = 0.5 # ---------------- Assignment config ---------------- ## Matcher self.iou_thresh = 0.5 ## Loss weight self.loss_obj = 1.0 self.loss_cls = 1.0 self.loss_box = 5.0 # ---------------- ModelEMA config ---------------- self.use_ema = True self.ema_decay = 0.9998 self.ema_tau = 2000 # ---------------- Optimizer config ---------------- self.trainer = 'yolo' self.optimizer = 'adamw' self.per_image_lr = 0.001 / 64 self.base_lr = None # base_lr = per_image_lr * batch_size self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio self.momentum = 0.9 self.weight_decay = 0.05 self.clip_max_norm = -1. self.warmup_bias_lr = 0.1 self.warmup_momentum = 0.8 # ---------------- Lr Scheduler config ---------------- self.warmup_epoch = 3 self.lr_scheduler = "cosine" self.max_epoch = 150 self.eval_epoch = 10 self.no_aug_epoch = 20 # ---------------- Data process config ---------------- self.aug_type = 'ssd' self.box_format = 'xyxy' self.normalize_coords = False self.mosaic_prob = 0.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 # approximated by the YOLOX's mixup self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.5] ## Pixel mean & std self.pixel_mean = [123.675, 116.28, 103.53] # RGB format self.pixel_std = [58.395, 57.12, 57.375] # RGB format ## Transforms self.train_img_size = 640 self.test_img_size = 640 def print_config(self): config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')} for k, v in config_dict.items(): print("{} : {}".format(k, v)) # YOLOv2-R18 class Yolov2R18Config(Yolov2BaseConfig): def __init__(self) -> None: super().__init__() self.backbone = 'resnet18' # YOLOv2-R50 class Yolov2R50Config(Yolov2BaseConfig): def __init__(self) -> None: super().__init__() # TODO: Try your best.