from typing import List import torch import torch.nn as nn import torch.nn.functional as F from .yolov7_af_basic import BasicConv, ELANLayerFPN, MDown # PaFPN-ELAN (YOLOv7's) class Yolov7PaFPN(nn.Module): def __init__(self, cfg, in_dims: List = [512, 1024, 512]): super(Yolov7PaFPN, self).__init__() # ----------------------------- Basic parameters ----------------------------- self.in_dims = in_dims self.out_dims = [round(256*cfg.width), round(512*cfg.width), round(1024*cfg.width)] c3, c4, c5 = in_dims # ----------------------------- Yolov7's Top-down FPN ----------------------------- ## P5 -> P4 self.reduce_layer_1 = BasicConv(c5, round(256*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.reduce_layer_2 = BasicConv(c4, round(256*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.width) + round(256*cfg.width), out_dim = round(256*cfg.width), expansions = cfg.fpn_expansions, branch_width = cfg.fpn_block_bw, branch_depth = cfg.fpn_block_dw, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P3 self.reduce_layer_3 = BasicConv(round(256*cfg.width), round(128*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.reduce_layer_4 = BasicConv(c3, round(128*cfg.width), kernel_size=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.top_down_layer_2 = ELANLayerFPN(in_dim = round(128*cfg.width) + round(128*cfg.width), out_dim = round(128*cfg.width), expansions = cfg.fpn_expansions, branch_width = cfg.fpn_block_bw, branch_depth = cfg.fpn_block_dw, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ----------------------------- Yolov7's Bottom-up PAN ----------------------------- ## P3 -> P4 self.downsample_layer_1 = MDown(round(128*cfg.width), round(256*cfg.width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.bottom_up_layer_1 = ELANLayerFPN(in_dim = round(256*cfg.width) + round(256*cfg.width), out_dim = round(256*cfg.width), expansions = cfg.fpn_expansions, branch_width = cfg.fpn_block_bw, branch_depth = cfg.fpn_block_dw, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) ## P4 -> P5 self.downsample_layer_2 = MDown(round(256*cfg.width), round(512*cfg.width), act_type=cfg.fpn_act, norm_type=cfg.fpn_norm) self.bottom_up_layer_2 = ELANLayerFPN(in_dim = round(512*cfg.width) + c5, out_dim = round(512*cfg.width), expansions = cfg.fpn_expansions, branch_width = cfg.fpn_block_bw, branch_depth = cfg.fpn_block_dw, act_type = cfg.fpn_act, norm_type = cfg.fpn_norm, depthwise = cfg.fpn_depthwise, ) # ----------------------------- Head conv layers ----------------------------- ## Head convs self.head_conv_1 = BasicConv(round(128*cfg.width), round(256*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.head_conv_2 = BasicConv(round(256*cfg.width), round(512*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) self.head_conv_3 = BasicConv(round(512*cfg.width), round(1024*cfg.width), kernel_size=3, padding=1, stride=1, act_type=cfg.fpn_act, norm_type=cfg.fpn_norm, depthwise=cfg.fpn_depthwise) def forward(self, features): c3, c4, c5 = features # ------------------ Top down FPN ------------------ ## P5 -> P4 p5 = self.reduce_layer_1(c5) p5_up = F.interpolate(p5, scale_factor=2.0) p4 = self.reduce_layer_2(c4) p4 = self.top_down_layer_1(torch.cat([p5_up, p4], dim=1)) ## P4 -> P3 p4_in = self.reduce_layer_3(p4) p4_up = F.interpolate(p4_in, scale_factor=2.0) p3 = self.reduce_layer_4(c3) p3 = self.top_down_layer_2(torch.cat([p4_up, p3], dim=1)) # ------------------ Bottom up PAN ------------------ ## P3 -> P4 p3_ds = self.downsample_layer_1(p3) p4 = torch.cat([p3_ds, p4], dim=1) p4 = self.bottom_up_layer_1(p4) ## P4 -> P5 p4_ds = self.downsample_layer_2(p4) p5 = torch.cat([p4_ds, c5], dim=1) p5 = self.bottom_up_layer_2(p5) out_feats = [self.head_conv_1(p3), self.head_conv_2(p4), self.head_conv_3(p5)] return out_feats