# Redesigned YOLOv1: - VOC | Model | Backbone | Batch | Scale | APval
0.5 | Weight | Logs | |--------|------------|-------|-------|-------------------|--------|--------| | YOLOv1 | ResNet-18 | 1xb16 | 640 | 75.0 | [ckpt](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/yolov1_r18_voc.pth) | [log](https://github.com/yjh0410/YOLO-Tutorial-v2/releases/download/yolo_tutorial_ckpt/YOLOv1-R18-VOC.txt) | - COCO | Model | Backbone | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |--------|------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv1 | ResNet-18 | 1xb16 | 640 | | | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) | - For training, we train redesigned YOLOv1 with 150 epochs on COCO. We also gradient accumulate. - For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation. - For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01. - For learning rate scheduler, we use linear decay scheduler. ## Train YOLOv1 ### Single GPU Taking training YOLOv1 on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov1 -bs 16 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 10 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOv1 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov1 -bs 128 -size 640 --wp_epoch 3 --max_epoch 150 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOv1 Taking testing YOLOv1 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov1 --weight path/to/yolov1.pth -size 640 -vt 0.3 --show ``` ## Evaluate YOLOv1 Taking evaluating YOLOv1 on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m yolov1 --weight path/to/yolov1.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov1 --weight path/to/weight -size 640 -vt 0.3 --show --gif ```