# PlainDETR Our `PlainDETR-R50-1x` baseline on COCO-val: ```Shell ``` ## Results on COCO | Model | Scale | Pretrained | FPS | APval
0.5:0.95 | APval
0.5 | Weight | Logs | | --------------- | ---------- | ------------ | ----- | ---------------------- | --------------- | ------ | ----- | | PlainDETR-R50 | 800,1333 | IN1K-Cls | | | | | | | PlainDETR-R50 | 800,1333 | IN1K-MIM | | | | | | - We explore whether PlainDETR can still be powerful when using ResNet as the backbone. - We set up two comparative experiments, using the ResNet-50 pre-trained for the IN1K classification task and the ResNet-50 pre-trained by IN1K's MIM as the backbone of PlainDETR. Among them, we used the MIM pre-trained ResNet-50 provided by [SparK](https://github.com/keyu-tian/SparK). ## Train PlainDETR ### Single GPU Taking training **PlainDETR** on COCO as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --batch_size 16 --eval_epoch 2 ``` ### Multi GPU Taking training **PlainDETR** on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root path/to/coco -m plain_detr_r50 --batch_size 16 --eval_epoch 2 ``` ## Test PlainDETR Taking testing **PlainDETR** on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --weight path/to/plain_detr_r50.pth -vt 0.4 --show ``` ## Evaluate PlainDETR Taking evaluating **PlainDETR** on COCO-val as the example, ```Shell python main.py --cuda -d coco --root path/to/coco -m plain_detr_r50 --resume path/to/plain_detr_r50.pth --eval_first ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m plain_detr_r50 --weight path/to/weight -vt 0.4 --show --gif ```