import torch import torch.nn as nn from typing import List # --------------------- Basic modules --------------------- def get_conv2d(c1, c2, k, p, s, d=1, g=1, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() else: raise NotImplementedError def get_norm(norm_type, dim): if norm_type == 'bn': return nn.BatchNorm2d(dim) elif norm_type == 'gn': return nn.GroupNorm(num_groups=32, num_channels=dim) elif norm_type is None: return nn.Identity() else: raise NotImplementedError class BasicConv(nn.Module): def __init__(self, in_dim, # in channels out_dim, # out channels kernel_size=1, # kernel size padding=0, # padding stride=1, # padding dilation=1, # dilation groups=1, # group act_type :str = 'lrelu', # activation norm_type :str = 'bn', # normalization depthwise :bool = False ): super(BasicConv, self).__init__() self.depthwise = depthwise use_bias = False if norm_type is not None else True if not depthwise: self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=groups, bias=use_bias) self.norm = get_norm(norm_type, out_dim) else: self.conv1 = get_conv2d(in_dim, in_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=in_dim, bias=use_bias) self.norm1 = get_norm(norm_type, in_dim) self.conv2 = get_conv2d(in_dim, out_dim, k=1, p=0, s=1, d=1, g=1, bias=use_bias) self.norm2 = get_norm(norm_type, out_dim) self.act = get_activation(act_type) def forward(self, x): if not self.depthwise: return self.act(self.norm(self.conv(x))) else: # Depthwise conv x = self.act(self.norm1(self.conv1(x))) # Pointwise conv x = self.act(self.norm2(self.conv2(x))) return x class DWConv(nn.Module): def __init__(self, in_dim :int, # in channels out_dim :int, # out channels kernel_size :int = 1, # kernel size padding :int = 0, # padding stride :int = 1, # padding dilation :int = 1, # dilation act_type :str = 'lrelu', # activation norm_type :str = 'BN', # normalization ): super(DWConv, self).__init__() assert in_dim == out_dim use_bias = False if norm_type is not None else True self.conv = get_conv2d(in_dim, out_dim, k=kernel_size, p=padding, s=stride, d=dilation, g=out_dim, bias=use_bias) self.norm = get_norm(norm_type, out_dim) self.act = get_activation(act_type) def forward(self, x): return self.act(self.norm(self.conv(x))) # --------------------- Downsample modules --------------------- class ADown(nn.Module): def __init__(self, in_dim :int, out_dim :int, act_type :str = "silu", norm_type :str = "bn", depthwise :bool = False): super().__init__() inter_dim = out_dim // 2 self.conv_layer_1 = BasicConv(in_dim // 2, inter_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.conv_layer_2 = BasicConv(in_dim // 2, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) def forward(self, x): # Split x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) x1,x2 = x.chunk(2, 1) # Downsample branch - 1 x1 = self.conv_layer_1(x1) # Downsample branch - 2 x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1) x2 = self.conv_layer_2(x2) return torch.cat([x1, x2], dim=1) class MDown(nn.Module): def __init__(self, in_dim :int, out_dim :int, act_type :str = 'silu', norm_type :str = 'BN', depthwise :bool = False, ) -> None: super().__init__() inter_dim = out_dim // 2 self.downsample_1 = nn.Sequential( nn.MaxPool2d((2, 2), stride=2), BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) ) self.downsample_2 = nn.Sequential( BasicConv(in_dim, inter_dim, kernel_size=1, act_type=act_type, norm_type=norm_type), BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): x1 = self.downsample_1(x) x2 = self.downsample_2(x) return torch.cat([x1, x2], dim=1) # --------------------- Feature processing modules --------------------- class MBottleneck(nn.Module): def __init__(self, in_dim :int, out_dim :int, expansion :float = 0.5, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'bn', depthwise :bool = False, ) -> None: super(MBottleneck, self).__init__() inter_dim = int(out_dim * expansion) # ----------------- Network setting ----------------- self.conv_layer = nn.Sequential( # 3x3 conv + bn + silu BasicConv(in_dim, inter_dim, kernel_size=3, padding=1, stride=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), # 5x5 dw conv DWConv(inter_dim, inter_dim, kernel_size=5, padding=2, stride=1, act_type=None, norm_type=norm_type), # 3x3 conv + bn + silu BasicConv(inter_dim, out_dim, kernel_size=3, padding=1, stride=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.conv_layer(x) return x + h if self.shortcut else h class CSPLayer(nn.Module): # CSP Bottleneck def __init__(self, in_dim :int, out_dim :int, num_blocks :int = 1, expansion :float = 0.5, shortcut :bool = True, act_type :str = 'silu', norm_type :str = 'bn', depthwise :bool = False, ) -> None: super().__init__() inter_dim = round(out_dim * expansion) self.input_proj = BasicConv(in_dim, out_dim, kernel_size=1, act_type=None, norm_type=norm_type, depthwise=depthwise) self.module = nn.Sequential(*[MBottleneck(inter_dim, inter_dim, expansion = 1.0, shortcut = shortcut, act_type = act_type, norm_type = norm_type, depthwise = depthwise, ) for _ in range(num_blocks)]) def forward(self, x): # Split x1, x2 = torch.chunk(self.input_proj(x), chunks=2, dim=1) # Branch x2 = self.module(x2) # Output proj out = torch.cat([x1, x2], dim=1) return out class ElanLayer(nn.Module): def __init__(self, in_dim, out_dim, expansion :float = 0.5, num_blocks :int = 1, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'bn', depthwise :bool = False, ) -> None: super(ElanLayer, self).__init__() inter_dim = round(out_dim * expansion) self.input_proj = BasicConv(in_dim, inter_dim * 2, kernel_size=1, act_type=act_type, norm_type=norm_type) self.output_proj = BasicConv((2 + num_blocks) * inter_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) self.module = nn.ModuleList([MBottleneck(inter_dim, inter_dim, expansion = 1.0, shortcut = shortcut, act_type = act_type, norm_type = norm_type, depthwise = depthwise) for _ in range(num_blocks)]) def forward(self, x): # Input proj x1, x2 = torch.chunk(self.input_proj(x), 2, dim=1) out = list([x1, x2]) # Bottleneck out.extend(m(out[-1]) for m in self.module) # Output proj out = self.output_proj(torch.cat(out, dim=1)) return out class GElanLayer(nn.Module): """Modified YOLOv9's GELAN module""" def __init__(self, in_dim :int, inter_dims :List, out_dim :int, num_blocks :int = 1, shortcut :bool = False, act_type :str = 'silu', norm_type :str = 'bn', depthwise :bool = False, ) -> None: super(GElanLayer, self).__init__() # ----------- Basic parameters ----------- self.in_dim = in_dim self.inter_dims = inter_dims self.out_dim = out_dim # ----------- Network parameters ----------- self.conv_layer_1 = BasicConv(in_dim, inter_dims[0], kernel_size=1, act_type=act_type, norm_type=norm_type) self.elan_module_1 = nn.Sequential( CSPLayer(inter_dims[0]//2, inter_dims[1], num_blocks = num_blocks, shortcut = shortcut, expansion = 0.5, act_type = act_type, norm_type = norm_type, depthwise = depthwise), BasicConv(inter_dims[1], inter_dims[1], kernel_size=3, padding=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.elan_module_2 = nn.Sequential( CSPLayer(inter_dims[1], inter_dims[1], num_blocks = num_blocks, shortcut = shortcut, expansion = 0.5, act_type = act_type, norm_type = norm_type, depthwise = depthwise), BasicConv(inter_dims[1], inter_dims[1], kernel_size=3, padding=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.conv_layer_2 = BasicConv(inter_dims[0] + 2*self.inter_dims[1], out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type) def forward(self, x): # Input proj x1, x2 = torch.chunk(self.conv_layer_1(x), 2, dim=1) out = list([x1, x2]) # ELAN module out.append(self.elan_module_1(out[-1])) out.append(self.elan_module_2(out[-1])) # Output proj out = self.conv_layer_2(torch.cat(out, dim=1)) return out