# RTCDet: My Empirical Study of Real-Time Convolutional Object Detectors. - VOC | Model | Batch | Scale | APval
0.5 | Weight | Logs | |-------------|-------|-------|-------------------|--------|--------| | RTCDet-S | 1xb16 | 640 | | | | - COCO | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | Logs | |-------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------|--------| | RTCDet-S | 1xb16 | 640 | | | 26.9 | 8.9 | | | ## Train RTCDet ### Single GPU Taking training RTCDet-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m rtcdet_s -bs 16 --fp16 ``` ### Multi GPU Taking training RTCDet-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda --distributed -d coco --root path/to/coco -m rtcdet_s -bs 256 --fp16 ``` ## Test RTCDet Taking testing RTCDet-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m rtcdet_s --weight path/to/RTCDet.pth --show ``` ## Evaluate RTCDet Taking evaluating RTCDet-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m rtcdet_s --weight path/to/RTCDet.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtcdet_s --weight path/to/weight --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m rtcdet_s --weight path/to/weight --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m rtcdet_s --weight path/to/weight --show --gif ```