import torch import torch.nn as nn from .yolov7_af_basic import BasicConv # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, cfg, in_dim, out_dim, expansion=0.5): super().__init__() ## ----------- Basic Parameters ----------- inter_dim = round(in_dim * expansion) self.out_dim = out_dim ## ----------- Network Parameters ----------- self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.cv2 = BasicConv(inter_dim * 4, out_dim, kernel_size=1, padding=0, stride=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.m = nn.MaxPool2d(kernel_size=cfg.spp_pooling_size, stride=1, padding=cfg.spp_pooling_size // 2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # SPPF block with CSP module class SPPFBlockCSP(nn.Module): """ CSP Spatial Pyramid Pooling Block """ def __init__(self, cfg, in_dim, out_dim): super(SPPFBlockCSP, self).__init__() inter_dim = int(in_dim * cfg.neck_expand_ratio) self.out_dim = out_dim self.cv1 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.cv2 = BasicConv(in_dim, inter_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) self.module = nn.Sequential( BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise), SPPF(cfg, inter_dim, inter_dim, expansion=1.0), BasicConv(inter_dim, inter_dim, kernel_size=3, padding=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm, depthwise=cfg.neck_depthwise), ) self.cv3 = BasicConv(inter_dim * 2, self.out_dim, kernel_size=1, act_type=cfg.neck_act, norm_type=cfg.neck_norm) def forward(self, x): x1 = self.cv1(x) x2 = self.module(self.cv2(x)) y = self.cv3(torch.cat([x1, x2], dim=1)) return y