# Gelan (proposed by yolov9) config def build_gelan_config(args): if args.model == 'gelan_s': return GElanSConfig() elif args.model == 'gelan_c': return GElanCConfig() else: raise NotImplementedError("No config for model: {}".format(args.model)) # GELAN-Base config class GElanBaseConfig(object): def __init__(self) -> None: # ---------------- Model config ---------------- self.reg_max = 16 self.out_stride = [8, 16, 32] self.max_stride = 32 self.num_levels = 3 ## Backbone self.backbone = 'gelan' self.bk_act = 'silu' self.bk_norm = 'BN' self.bk_depthwise = False self.use_pretrained = True self.backbone_feats = { "c1": [64], "c2": [128, [128, 64], 256], "c3": [256, [256, 128], 512], "c4": [512, [512, 256], 512], "c5": [512, [512, 256], 512], } self.scale = "l" self.backbone_depth = 1 ## Neck self.neck = 'spp_elan' self.neck_act = 'silu' self.neck_norm = 'BN' self.spp_pooling_size = 5 self.spp_inter_dim = 256 self.spp_out_dim = 512 ## FPN self.fpn = 'gelan_pafpn' self.fpn_act = 'silu' self.fpn_norm = 'BN' self.fpn_depthwise = False self.fpn_depth = 1 self.fpn_feats_td = { "p4": [[512, 256], 512], "p3": [[256, 128], 256], } self.fpn_feats_bu = { "p4": [[512, 256], 512], "p5": [[512, 256], 512], } ## Head self.head = 'gelan_head' self.head_act = 'silu' self.head_norm = 'BN' self.head_depthwise = False self.num_cls_head = 2 self.num_reg_head = 2 # ---------------- Post-process config ---------------- ## Post process self.val_topk = 1000 self.val_conf_thresh = 0.001 self.val_nms_thresh = 0.7 self.test_topk = 100 self.test_conf_thresh = 0.2 self.test_nms_thresh = 0.5 # ---------------- Assignment config ---------------- ## Matcher self.tal_topk_candidates = 10 self.tal_alpha = 0.5 self.tal_beta = 6.0 ## Loss weight self.loss_cls = 0.5 self.loss_box = 7.5 self.loss_dfl = 1.5 # ---------------- ModelEMA config ---------------- self.use_ema = True self.ema_decay = 0.9998 self.ema_tau = 2000 # ---------------- Optimizer config ---------------- self.trainer = 'yolo' self.optimizer = 'adamw' self.per_image_lr = 0.001 / 64 self.base_lr = None # base_lr = per_image_lr * batch_size self.min_lr_ratio = 0.01 # min_lr = base_lr * min_lr_ratio self.momentum = 0.9 self.weight_decay = 0.05 self.clip_max_norm = 35.0 self.warmup_bias_lr = 0.1 self.warmup_momentum = 0.8 # ---------------- Lr Scheduler config ---------------- self.warmup_epoch = 3 self.lr_scheduler = "cosine" self.max_epoch = 300 self.eval_epoch = 10 self.no_aug_epoch = 20 # ---------------- Data process config ---------------- self.aug_type = 'yolo' self.box_format = 'xyxy' self.normalize_coords = False self.mosaic_prob = 0.0 self.mixup_prob = 0.0 self.copy_paste = 0.0 # approximated by the YOLOX's mixup self.multi_scale = [0.5, 1.25] # multi scale: [img_size * 0.5, img_size * 1.25] ## Pixel mean & std self.pixel_mean = [0., 0., 0.] self.pixel_std = [255., 255., 255.] ## Transforms self.train_img_size = 640 self.test_img_size = 640 self.use_ablu = True self.affine_params = { 'degrees': 0.0, 'translate': 0.2, 'scale': [0.1, 2.0], 'shear': 0.0, 'perspective': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, } def print_config(self): config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')} for k, v in config_dict.items(): print("{} : {}".format(k, v)) # GELAN-C class GElanCConfig(GElanBaseConfig): def __init__(self) -> None: super().__init__() self.backbone = 'gelan' self.use_pretrained = True self.scale = "l" # ---------------- Data process config ---------------- self.mosaic_prob = 1.0 self.mixup_prob = 0.1 self.copy_paste = 0.5 # GELAN-S class GElanSConfig(GElanBaseConfig): def __init__(self) -> None: super().__init__() # ---------------- Model config ---------------- ## Backbone self.backbone = 'gelan' self.use_pretrained = True self.backbone_feats = { "c1": [32], "c2": [64, [64, 32], 64], "c3": [64, [64, 32], 128], "c4": [128, [128, 64], 256], "c5": [256, [256, 128], 256], } self.scale = "s" self.backbone_depth = 3 ## Neck self.spp_inter_dim = 128 self.spp_out_dim = 256 ## FPN self.fpn_depth = 3 self.fpn_feats_td = { "p4": [[256, 128], 256], "p3": [[128, 64], 128], } self.fpn_feats_bu = { "p4": [[256, 128], 256], "p5": [[256, 128], 256], } # ---------------- Data process config ---------------- self.mosaic_prob = 1.0 self.mixup_prob = 0.0 self.copy_paste = 0.5 # approximated by the YOLOX's mixup def print_config(self): config_dict = {key: value for key, value in self.__dict__.items() if not key.startswith('__')} for k, v in config_dict.items(): print("{} : {}".format(k, v))